精英家教网 > 初中数学 > 题目详情

【题目】如图,EFAD,将平行四边形ABCD沿着EF对折.设∠1的度数为,则∠C=______.(用含有n的代数式表示)

【答案】180°﹣

【解析】

由四边形ABCD是平行四边形,可知∠B=180°﹣C;再由由折叠的性质可知,∠GHC=C,即可得∠GHB=180°﹣C;根据三角形的外角的性质可知∠1=GHB+∠B=360°﹣2C,即可得360°﹣2C=n°,由此求得∠C=180°﹣n°.

∵四边形ABCD是平行四边形,

∴∠B=180°﹣C,

由折叠的性质可知,∠GHC=C,

∴∠GHB=180°﹣C,

由三角形的外角的性质可知,∠1=GHB+∠B=360°﹣2C,

360°﹣2C=n°,

解得,∠C=180°﹣n°,

故答案为:180°﹣n°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为( )

A. 3 B. 5 C. 35 D. 36

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解甲、乙两班英语口语水平,每班随机抽取了10名学生进行了口语测验,测验成绩满分为10分,参加测验的10名学生成绩(单位:分)称为样本数据,抽样调查过程如下:

收集数据

甲、乙两班的样本数据分别为:

甲班:6 7 9 4 6 7 6 9 6 10

乙班:7 8 9 7 5 7 8 5 9 5

整理和描述数据

规定了四个层次:9分以上(含9分)为优秀”,8-9分(含8分)为良好”,6-8分(含6分)为一般”,6分以下(不含6分)为不合格。按以上层次分布绘制出如下的扇形统计图。

请计算:(1)图1中,不合格层次所占的百分比;

(2)图2中,优秀层次对应的圆心角的度数。

分析数据

对于甲、乙两班的样本数据,请直接回答:

(1)甲班的平均数是7,中位数是_____;乙班的平均数是_____,中位数是7;

(2)从平均数和中位数看,____班整体成绩更好。

解决问题

若甲班50人,乙班40人,通过计算,估计甲、乙两班不合格层次的共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某快递公司的每位“快递小哥”日收入与每日的派送量成一次函数关系,如图所示.

1)求每位“快递小哥”的日收入y(元)与日派送量x(件)之间的函数关系式;

2)已知某“快递小哥”的日收入不少于110元,则他至少要派送多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】情境观察:

如图1,△ABC中,AB=AC,∠BAC=45°CDABAEBC,垂足分别为DECDAE交于点F

①写出图1中所有的全等三角形

②线段AF与线段CE的数量关系是

问题探究:

如图2,△ABC中,∠BAC=45°AB=BCAD平分∠BACADCD,垂足为DADBC交于点E

求证:AE=2CD

拓展延伸:

如图3,△ABC中,∠BAC=45°AB=BC,点DAC上,∠EDC= BACDECE,垂足为EDEBC交于点F.求证:DF=2CE

要求:请你写出辅助线的作法,并在图3中画出辅助线,不需要证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,CE平分∠ACBABE点,DEBCDFAB

1)若∠BCE25°,请求出∠ADE的度数;

2)已知:BF2BEDFCEP点,连结BPABBP

猜想:△CDF的边DFCD的数量关系,并说明理由;

DE的中点N,连结NP.求证:∠ENP3DPN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=8BC=6.点E在边AB上,点F在边CD上,点GH在对角线AC上,若四边形EGFH是菱形,则AE的长是_________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是(  )

A. (﹣2,4),(1,3) B. (﹣2,4),(2,3)

C. (﹣3,4),(1,4) D. (﹣3,4),(1,3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠ABC60°AB2.过点A作对角线BD的平行线与边CD的延长线相交于点EP为边BD上的一个动点(不与端点BD重合),连接PAPEAC

1)求证:四边形ABDE是平行四边形;

2)求四边形ABDE的周长和面积;

3)记ABP的周长和面积分别为C1S1PDE的周长和面积分别为C2S2,在点P的运动过程中,试探究下列两个式子的值或范围:①C1+C2,②S1+S2,如果是定值的,请直接写出这个定值;如果不是定值的,请直接写出它的取值范围.

查看答案和解析>>

同步练习册答案