【题目】如图1,抛物线与x轴交于A,B两点(点A在点B右侧),与y轴交于点C,点D是抛物线的顶点.
(1)如图1,连接AC、BC,若点P是直线AC上方抛物线上一动点,过点P作PE//BC交于点E,作PQ//y轴交AC于点Q,当△PQE周长最大时,若点M在y轴上,点N在x轴上,求PM+MN
AN的最小值;
(2)如图2,点G为x轴正半轴上一点,且OG=OC,连接CG,过点作
于点
,将
绕点
顺时针旋转
,记旋转中的
为△
,在旋转过程中,直线
,
分别与直线
交于点
,
,△
能否成为等腰三角形?若能请直接写出所有满足条件的
的值;若不能,请说明理由.
【答案】(1)PM+MN﹣AN的最小值是
;(2)满足条件的旋转角α为15°或37.5°或60°或127.5°.
【解析】
(1)构建二次函数,求出点P坐标,如图2中,作sin∠OAF=, 作PN⊥AF,则有PM+MN≥PN,NH=
AN,可知PM+MN-AN
AN的最小值即为PH的长,根据同角的三角函数可得PH的长;
(2)分四种情形分别画出图形分别求解即可解决问题;
解:(1)如图1,对于抛物线,令y=0,得到x=6或-2,
∴A(6,0),B(-2,0),
当x=0时,y=2,
∴C(0,2),
Rt△AOC中,OC=2, OA=6,
∴AC=4,
∴∠ACO=60°,同理得∠BCO=30°
∴∠ACB=30°+60°=90°,
∵PE∥BC,
∴∠PEQ=90°,
∵PQ∥y轴,
∴∠ACO=∠PQC=60°,
∴当PQ最大时,△PQE周长最大,
设,则
,
当x=3时,PQ最长,此时,△PQE周长最大,
如图2,在y轴上取点,得
,
,作PH⊥AF,交AF于H,交y轴于M,交x轴于N,AF交PQ于K,
则PM+MN-ANAN的最小值即为PH的长,
∵A(6,0),,
易得直线AF的解析式为,
当x=3时,
综上,PM+MN-ANAN的最小值是
.
(2)如图3中,当MN=MG′时,设OA交G′N于L,
∵∠MG′N=75°,
∴∠MNG′=∠MG′N=75°,
∴∠NLA=75°-30°=45°,
∵∠OLG'=∠NLA=45°,∠OG′L=45°+75°=120°,
∴∠AOG′=180°-120°-45°=15°,
∴旋转角为15°.
如图4中,当G′M=G′N时,设OA交C′G′于L.
∵∠MG′N=75°,
∴∠G′MN=(180°-75°)=52.5°,
∴∠OLG′=∠ALM=180°-30°-52.5°=97.5°,
∴∠AOG′=180°-97.5°-45°=37.5°,
∴旋转角为37.5°.
如图5中,当NG′=NM时,设OA交G′C′于L.
∵∠NG′M=∠NMG′=75°,
∴∠MNG′=∠CAO=30°,
∴AL∥NG′,
∴∠OLG′=∠MG'N=75°,
∴∠AOG′=180°-75°-45°=60°,
∴旋转角为60°.
如图6中,当G′M=G′N时,
∵∠MG′N=180°-75°=105°,
∴∠NMG′=(180°-105°)=37.5°,
∴∠AOC′=360°-150°-135°-37.5°=37.5°,
∴∠AOG′=90°+37.5°=127.5°
∴旋转角为127.5°.
综上所述,满足条件的旋转角α为15°或37.5°或60°或127.5°.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).
(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;
(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了了解九年级学生体育测试成绩情况,以九年级(1)班学生的体育测试成绩为样本,按B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分~74分;D级:60分以下)
(1)求出D级学生的人数占全班总人数的百分比;
(2)求出扇形统计图(图2)中C级所在的扇形圆心角的度数;
(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a+b=0; ③ b2-4ac<0;④ 9a+3b+c>0; ⑤ c+8a<0.正确的结论有( ).
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】蔬菜基地为选出适应市场需求的西红柿秧苗,在条件基本相同的情况下,将甲、乙两个品种的西红柿秧苗各500株种植在同一个大棚.对市场最为关注的产量进行了抽样调查,随机从甲、乙两个品种的西红柿秧苗中各收集了50株秧苗上的挂果数(西红柿的个数),并对数据(个数)进行整理、描述和分析,下面给出了部分信息.
a. 甲品种挂果数频数分布直方图(数据分成6组:25≤x<35,35≤x<45,45≤x<55,55≤x<65,65≤x<75,75≤x<85).
b. 甲品种挂果数在45≤x<55这一组的是:
45,45,46,47,47,49,49,49,49,50,50,51,51,54
c. 甲、乙品种挂果数的平均数、中位数、众数如下:
品种 | 平均数 | 中位数 | 众数 | 方差 |
甲 | 49.4 | m | 49 | 1944.2 |
乙 | 48.6 | 48.5 | 47 | 3047 |
根据以上信息,回答下列问题:
(1)表中m= ;
(2)试估计甲品种挂果数超过49个的西红柿秧苗的数量;
(3)可以推断出 品种的西红柿秧苗更适应市场需求,理由为 (至少从两个不同的角度说明推断的合理性).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角三角形中,如果已知2个元素(其中至少有一个是边),那么就可以求出其余的3个未知元素.对于任意三角形,我们需要知道几个元素就可以求出其余的未知元素呢?思考并解答下列问题:
(1)观察下列4幅图,根据图中已知元素,可以求出其余未知元素的三角形是 .
(2)如图,在△ABC中,已知∠B=40°,BC=18,AB=15,请求出AC的长度(答案保留根号).(参考数据:sin40°≈0.6,cos40°≈0.8,tan40°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌
即可得
,则可证得
为
的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得
的长,又由OE∥AB,证得
根据相似三角形的对应边成比例,即可求得
的长,然后利用三角函数的知识,求得
与
的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校兴趣小组就“最想去的漳州5个最美乡村”随机调查了本校部分学生. 要求每位同学选择且只能选择一个最想去的最美乡村. 下面是根据调查结果绘制出的尚不完整统计表和统计图,其中x、y是满足x<y的正整数.
最美乡村意向统计表
最美乡村 | 人数 |
A:龙海埭美村 | 10 |
B:华安官畬村 | 11 |
C:长泰山重村 | 4x |
D:南靖塔下村 | 9 |
E:东山澳角村 | 3y |
最美乡村意向扇形统计图
根据以上信息,解答下列问题:
(1)求x、y的值;
(2)若该校有1200名学生,请估计“最想去华安官畬村”的学生人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com