精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方).
(1)求A、B两点的坐标;
(2)设△OMN的面积为S,直线l运动时间为t秒(0≤t≤6),试求S与t的函数表达式;
(3)在题(2)的条件下,t为何值时,S的面积最大?最大面积是多少?

【答案】分析:(1)已知了菱形的边长,过A作AD⊥OC于D,在直角三角形OAD中,可根据OA的长和∠AOC的度数求出OD和AD的长,即可得出A点坐标,将A的坐标向右平移4个单位即可得出B点坐标.
(2)当l过A点时,ON=OD=2,因此t=2;当l过C点时,ON=OC=4,此时t=4.因此本题可分三种情况:
①当0≤t≤2时,直线l与OA、OC两边相交,此时ON=t,MN=t,根据三角形的面积公式即可得出S,t的函数关系式.
②当2<t≤4时,直线l与AB、OC两边相交,此时三角形OMN中,NM的长与AD的长相同,而ON=t,由此就不难得出S,t的函数关系式.
③当4<t≤6时,直线l与AB、BC两边相交,可设直线l与x轴交点为H,那么三角形OMN可以MN为底,OH为高来计算其面积.OH的长为t,而MN的长可通过MH-NH来求得,其中,MH可用OH和∠MOH的正切值求出,HN可用CH的长和∠BCH的正切值求出.据此可得出关于S,t的函数关系式.
(3)根据(2)中各函数的性质和各自的自变量的取值范围可得出S的最大值及对应的t的值.
解答:解:(1)∵四边形OABC为菱形,点C的坐标为(4,0),
∴OA=AB=BC=CO=4.
过点A作AD⊥OC于D.
∵∠AOC=60°,
∴OD=2,AD=2
∴A(2,2),B(6,2).(3分)

(2)直线l从y轴出发,沿x轴正方向运动与菱形OABC的两边相交有三种情况:
①0≤t≤2时,直线l与OA、OC两边相交,(如图①).

∵MN⊥OC,
∴ON=t.
∴MN=ONtan60°=t.
∴S=ON•MN=t2.(4分)
②当2<t≤4时,直线l与AB、OC两边相交,(如图②).

S=ON•MN=×t×2=t.(6分)
③当4<t≤6时,直线l与AB、BC两边相交,(如图③).

设直线l与x轴交于点H.
∵MN=2-(t-4)=6-t,
∴S=OH•MN=t(6-t)
=-t2+3t.

(3)由(2)知,当0≤t≤2时,S最大=×22=2
当2<t≤4时,S最大=
当4<t≤6时,配方得S=-(t-3)2+
∴当t=3时,函数S=-t2+3t的最大值是
但t=3不在4<t≤6内,
∴在4<t≤6内,函数S=-t2+3t的最大值不是
而当t>3时,函数S=-t2+3t随t的增大而减小,
∴当4<t≤6时,S<4
综上所述,当t=4时,S最大=
点评:本题为运动性问题,考查了菱形的性质、图形面积的求法、二次函数的应用等知识.
考查学生分类讨论、数形结合的数学数形方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案