精英家教网 > 初中数学 > 题目详情
5.解方程组或不等式组.
(1)解方程组$\left\{\begin{array}{l}{2x+y=3}\\{3x-5y=11}\end{array}\right.$
(2)解不等式组$\left\{\begin{array}{l}{3x-1<2}\\{2x+6>0}\end{array}\right.$.

分析 (1)将第一个方程整理得到y=-2x+3,然后利用代入消元法解二元一次方程组即可;
(2)先求出两个不等式的解集,再求其公共解.

解答 解:(1)$\left\{\begin{array}{l}{2x+y=3①}\\{3x-5y=11②}\end{array}\right.$,
由①得,y=-2x+3③,
③代入②得,3x-5(-2x+3)=11,
解得x=2,
将x=2代入③得,y=-2×2+3=-1,
所以,方程组的解是$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$;

(2)$\left\{\begin{array}{l}{3x-1<2①}\\{2x+6>0②}\end{array}\right.$,
解不等式①得,x<1,
解不等式②得,x>-3,
所以,不等式组的解集是-3<x<1.

点评 本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图,△ABC为等边三角形,点P是边AC的延长线上一点,连接BP,作∠BPQ等于60°,直线PQ与直线BC交于点N.
(1)若点C平分AP时,求证:PB=PN;
(2)若点C 不平分时,求证:AP•PC=AB•CN;
(3)若BC=2,CN=$\frac{3}{2}$,求∠N的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列图形中,是轴对称图形的有(  )个.
①角;②线段;③等腰三角形;④等边三角形;⑤三角形.
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图①,矩形OABC的边OA、OC分别在坐标轴上,点B在第二象限,且点B的横、纵坐标是一元二次方程m2+m-12=0的两个实数根.把矩形OABC沿直线BE折叠,使点C落在AB边上的点F处,点E在CO边上.
(1)直接填空:B(-4,3),F(-1,3);
(2)如图②,若△BCE从该位置开始,以固定的速度沿x轴水平向右移动,直到点C与原点O重合时停止.记△BCE平移后为△B′C′E′,△B′C′E′与四边形OABE重叠部分的面积为S,请求出面积S与平移距离t之间的函数关系式,并直接写出t的取值范围;
(3)如图③,设点G为EF中点,若点M在直线CG上,点N在y轴上,是否存在这样的点M,使得以M、N、B、G为顶点的四边形为平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在平面直角坐标系xOy中,一次函数y=$\frac{1}{2}$x+1的图象与x轴交于点A,与y轴交于点C,与反比例函数y=$\frac{k}{x}$(k≠0)的图象交于B,D两点,且AC=BC.
(1)写出点A,B的坐标为:A(-2,0),B(2,2)
(2)求出点D的坐标,并直接写出当反比例函数的值大于一次函数的值时对应x的取值范围;
(3)若P是x轴上一点,PM⊥x轴交一次函数于点M,交反比例函数于点N,当O,C,M,N为顶点的四边形为平行四边形时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,已知⊙O的半径为1,将一块腰长为$\sqrt{2}$等腰直角三角板ABO的一个顶点与圆心O重合,∠ABO=90°.设点M为⊙O上一动点,连接BM,过点B向BM下方作BN⊥BM,且BN=BM,连接MN,AN,OM,
(1)求AN的长;
(2)若NM与⊙O相切,求∠BMO的度数;
(3)当O,M,N三点在同一直线上时,求ON的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.解不等式组$\left\{\begin{array}{l}{3(x+1)<5(x+3)}\\{\frac{x+2}{3}-\frac{x+1}{2}>1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.已知x1,x2是二次方程ax2+bx+c=0的两根,记S1=x1+x2,S2=x12+x22,…,Sn=x1n+x2n,则aSn+bSn-1+cSn-2的值为0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.当m取2 时,关于 x的方程mx+m=2x无解.

查看答案和解析>>

同步练习册答案