精英家教网 > 初中数学 > 题目详情
如图1,在平面直角坐标系中,点A、C分别在x轴、y轴上,四边形OABC是面积为4的正方形,函数y=
k 
x
(x>0)的图象经过点B.
(1)k=
4
4

(2)如图2,将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′和正方形MA′BC.设线段MC′、NA′分别与函数y=
k 
x
(x>0)的图象交于点E、F,则点E、F的坐标分别为:E (
4
4
1
1
),F (
1
1
4
4
);
(3)如图3,面积为4的正方形ABCD的顶点A、B分别在y轴、x轴上,顶点C、D在反比例函数y=
k
x
(x>0)的图象上,试求OA、OB的长.(请写出必要的解题过程)
分析:(1)设B点坐标为(a,b),根据正方形OABC是面积为4可以求出k的值;
(2)根据正方形MABC′、NA′BC由正方形OABC翻折所得:ON=OM=2AO=4,点E横坐标,点F纵坐标均可以求出,再根据点E、F在函数y=
4
x
的图象上,求出M和N点的坐标;
(3)作DE⊥y轴于E,CF⊥x轴于F,ED、FC交与G,设OA=BF=CG=DE=a,OB=FC=GD=EA=b,根据k的几何意义,求出a和b之间的关系,即判断出OA和OB等量关系,再结合正方形的面积求出OA、OB的长.
解答:解:(1)设B点坐标为(a,b),
∵四边形OABC是面积为4的正方形,
∴ab=4,
∵函数y=
k 
x
(x>0)的图象经过点B,
∴k=ab=4;       

(2)∵正方形MABC′、NA′BC由正方形OABC翻折所得,
∴ON=OM=2AO=4,
∴点E横坐标为4,点F纵坐标为4.
∵点E、F在函数y=
4
x
的图象上,
∴当x=4时,y=1,即E(4,1),
当y=4时,x=1,即F(1,4).
∴E(4,1)F(1,4)

(3)作DE⊥y轴于E,CF⊥x轴于F,ED、FC交与G.
易证△AOB≌△BFC≌△CGD≌△DEA,
设OA=BF=CG=DE=a,OB=FC=GD=EA=b,
由k的几何意义得:a(a+b)=b(b+a),
所以,a=b,即OA=OB,
由正方形的面积为4,可得AB=2,所以OA=OB=
2
点评:本题主要考查了反比例函数的综合题,熟练掌握反比例函数与一次函数的性质,综合性比较强,注意反比例函数上的点向x轴y轴引垂线形成的矩形面积等于反比例函数的k值.要会熟练地运用待定系数法求函数解析式,这是基本的计算能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、在数学上,为了确定平面上点的位置,我们常用下面的方法:如图甲,在平面内画两条互相垂直,并且有公共原点O的数轴,通常一条画成水平,叫x轴,另一条画成铅垂,叫y轴,这样,我们就说在平面上建立了一个平面直角坐标系,这是由法国数学家和哲学家笛卡尔创立的,这样我们就能确定平面上点的位置,例如,要确定点M的位置,只要作MP⊥x轴,MP⊥y轴,设垂足N,P在各自数轴上所表示的数分别为x,y,则x叫做点M的横坐标,y叫做点M的纵坐标,有序数对(x,y)叫做M点的坐标,如图甲,点M的坐标记作(2,3),(1)△ABC在平面直角坐标系中的位置如图乙,请把△ABC向右平移3个单位,在平面直角坐标系中画出平移后的△A′B′C′;
(2)请写出平移后点A′的坐标,记作
(2,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,将一块腰长为2
2
cm的等腰直角三角板ABC如图放置,BC边与x轴重合,∠ACB=90°,直角顶点C的坐标为(-3,0).
(1)点A的坐标为
(-3,2
2
(-3,2
2
,点B的坐为
(-3-2
2
,0)
(-3-2
2
,0)

(2)求以原点O为顶点且过点A的抛物线的解析式;
(3)现三角板ABC以1cm/s的速度沿x轴正方向平移,则平移的时间为多少秒时,三角板的边所在直线与半径为2cm的⊙O相切?

查看答案和解析>>

科目:初中数学 来源:同步轻松练习 八年级 数学 上 题型:059

学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人(如图)

(1)按照这种规定填写下表:

(2)根据表中的数据,将s作为纵坐标,n作为横坐标,在如图所示的平面直角坐标系中找出相应各点.

(3)请你猜一猜上述各点会在某一个函数图象上吗?如果在某一函数图象上,求出该函数的解析式,并利用你探求的结果,求出当n=10时,s的值.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年北京海淀区九年级第一学期期中测评数学试卷(解析版) 题型:解答题

阅读下面的材料:

小明在研究中心对称问题时发现:

如图1,当点为旋转中心时,点绕着点旋转180°得到点,点再绕着点旋转180°得到点,这时点与点重合.

如图2,当点为旋转中心时,点绕着点旋转180°得到点,点绕着点旋转180°得到点,点绕着点旋转180°得到点,点绕着点旋转180°得到点,小明发现P、两点关于点中心对称.

(1)请在图2中画出点, 小明在证明P、两点关于点中心对称时,除了说明P、三点共线之外,还需证明;

(2)如图3,在平面直角坐标系xOy中,当为旋转中心时,点绕着点旋转180°得到点;点绕着点旋转180°得到点;点绕着点旋转180°得到点;点绕着点旋转180°得到点. 继续如此操作若干次得到点,则点的坐标为(),点的坐为.

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在数学上,为了确定平面上点的位置,我们常用下面的方法:如图甲,在平面内画两条互相垂直,并且有公共原点O的数轴,通常一条画成水平,叫x轴,另一条画成铅垂,叫y轴,这样,我们就说在平面上建立了一个平面直角坐标系,这是由法国数学家和哲学家笛卡尔创立的,这样我们就能确定平面上点的位置,例如,要确定点M的位置,只要作MP⊥x轴,MP⊥y轴,设垂足N,P在各自数轴上所表示的数分别为x,y,则x叫做点M的横坐标,y叫做点M的纵坐标,有序数对(x,y)叫做M点的坐标,如图甲,点M的坐标记作(2,3),
(1)△ABC在平面直角坐标系中的位置如图乙,请把△ABC向右平移3个单位,在平面直角坐标系中画出平移后的△A′B′C′;
(2)请写出平移后点A′的坐标,记作______.

查看答案和解析>>

同步练习册答案