精英家教网 > 初中数学 > 题目详情
8.已知:直线y=kx+b平行于直线y=-3x+4且与y轴交于点(0,-5),则此函数的解析式为y=-3x-5.

分析 先利用两直线平行得到k=-3,再把(0,-5)代入y=-3x+b中求出b即可.

解答 解:∵直线y=kx+b平行于直线y=-3x+4,
∴k=-3,
把(0,-5)代入y=-3x+b得b=-5,
∴此函数的解析式为y=-3x-5.
故答案为y=-3x-5.

点评 本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出如下定义:
若b′=$\left\{\begin{array}{l}{b,a≥1}\\{-b,a<1}\end{array}\right.$,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(-2,5)的限变点的坐标是(-2,-5).
(1)①点($\sqrt{3}$,1)的限变点的坐标是($\sqrt{3}$,1);
②在点A(-2,-1),B(-1,2)中有一个点是函数y=$\frac{2}{x}$图象上某一个点的限变点,这个点是(-1,2);
(2)若点P在函数y=-x+3(-2≤x≤k,k>-2)的图象上,其限变点Q的纵坐标b′的取值范围是-5≤b′≤2,求k的取值范围5≤k≤8.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.若一次函数y=kx+b的图象经过点P(-2,3),则2k-b的值为(  )
A.2B.-2C.3D.-3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如表:
售价(元/件)100110120130
月销量(件)200180160140
已知该运动服的进价为每件60元,设售价为x元.销量该运动服每件的利润为y元,销量为W件,其中W与x成一次函数关系.
(1)写出y与x的函数关系式;
(2)求出W与x的函数关系式;
(3)售价为150元时,月销售量是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,反比例函数y=$\frac{k}{x}$(k>0)与长方形OABC在第一象限相交于D、E两点,OA=2,OC=4,连结OD、OE、DE.记△OAD、△OCE的面积分别为S1、S2
(1)填空:①点B坐标为(4,2);②S1=S2(填“>”、“<”、“=”);
(2)当S1+S2=2时,求:?k的值及点D、E的坐标;?试判断△ODE的形状,并求△ODE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,港口A在观测站O的正东方向,OA=40海里,某船从港口A出发,沿北偏东15°方向航行半小时后到达B处,此时从观测站O处测得该船位于北偏东60°的方向.求该船航行的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.(1)计算:$\sqrt{2}$•sin45°+(3-π)0+(-2)
(2)化简:(a-$\frac{a}{a+1}$)÷$\frac{1}{a+1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知△ABC为边长为6的等边三角形,D、E分别在边BC、AC上,且CD=CE=x,连接
DE并延长至点F,使EF=AE,连接AF、CF.
(1)求证:△AEF为等边三角形;
(2)求证:四边形ABDF是平行四边形;
(3)记△CEF的面积为S,
①求S与x的函数关系式;
②当S有最大值时,判断CF与BC的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知抛物线y=a(x-3)2经过点A(2,$\frac{1}{2}$).
(1)写出抛物线的表达式,并指出抛物线的对称轴;
(2)求出与点A(2,$\frac{1}{2}$)关于该抛物线的对称轴对称的点A′的坐标.

查看答案和解析>>

同步练习册答案