精英家教网 > 初中数学 > 题目详情
在1×3的矩形内不重叠地放两个与大矩形相似的小矩形,且每个小矩形的每条边与大矩形的一条边平行.
(Ⅰ)如图①放置时,两个小矩形周长和(两个小矩形重叠的边要重复计算)为  
(Ⅱ)怎样放置才能使两个小矩形周长和最大?在图②中画出图形,其最大值为  
  

试题分析:(Ⅰ)根据相似多边形对应边成比例列式求出小矩形的宽,然后根据周长公式进行计算即可得解;
(Ⅱ)根据放置方式的不同,分①两个小矩形都“竖放”时,与(Ⅰ)相同,②两个小矩形都“横放”,再分都横向放置,一上一下放置两种情况,先表示出一个矩形的长与宽,再根据大矩形是1×3的规格表示出另一个矩形的长与宽,然后根据矩形的周长公式列式整理,即可得解;③两个小矩形一个“横放”,一个“竖放”,先表示出一个矩形的长与宽,再表示出另一个矩形的长与宽,然后根据矩形的周长公式列式整理,然后根据大矩形是1×3的规格求出a的取值范围,再根据一次函数的增减性解答.
解:(Ⅰ)设小矩形的宽为x,
∵小矩形与大矩形相似,
=
解得x=
所以,两个小矩形周长和=2×2(1+)=
(Ⅱ)

两个矩形的放置方式情况有如下几种:
①两个小矩形都“竖放”,在这种放法下,周长和最大的两个小矩形边长分别为1和,周长和的最大值为

②两个小矩形都“横放”,

这时两个小矩形的周长和的最大值为:
2(a+3a)+2[1﹣a+3(1﹣a)]=8a+2(1﹣a+3﹣3a)=8a+8﹣8a=8;
③两个小矩形一个“横放”,一个“竖放”,这时两个小矩形的周长和为:
2(a+3a)+2(3﹣a+)=8a+6﹣2a+2﹣a=8+

因为0<3a≤1,即0<a≤
故当a=时,此时两个小矩形的周长和最大为8+=
故答案为:
点评:本题考查了相似多边形的性质,矩形的性质,主要利用了相似多边形对应边成比例的性质,(2)要根据放置方式的不同进行讨论求解.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,Rt△ABC,D是斜边AC上的一动点(点D不与点A、C重合),过D点作直线截△ABC,使截得的三角形与△ABC相似,请你画出满足条件的所有直线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,E,F,G,H分别是正方形ABCD各边的中点,要使中间阴影部分小正方形的面积是5,那么大正方形的边长应该是(  )
A.B.C.5D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

正方形ABCD边长为a,点E、F分别是对角线BD上的两点,过点E、F分别作AD、AB的平行线,如图所示,则图中阴影部分的面积之和等于           

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

八年级数学学习合作小组在学过《图形的相似》这一章后,发现可将相似三角形的定义、判定以及性质拓展到矩形、菱形的相似中去.如:我们可以定义:“长和宽之比相等的矩形是相似矩形.”相似矩形也有以下的性质:相似矩形的对角线之比等于相似比,周长比等于相似比,面积比等于相似比的平方等等.请你参与这个学习小组,一同探索这类问题:

(1)写出判定菱形相似的一种判定方法:若有一组角对应相等(或两组对角线对应成比例),则这两个菱形相似;
(2)如图,将菱形ABCD沿着直线AC向右平移后得到菱形A′B′C′D′,试证明:四边形A′FCE是菱形,且菱形ABCD∽菱形A′FCE;
(3)若AC=,菱形A′FCE的面积是菱形ABCD面积的一半,求平移的距离AA′的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如果两个相似多边形的周长之比为,那么它们的面积之比为  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将一个矩形纸片ABCD沿AD和BC的中点的连线对折,要使矩形AEFB与原矩形相似,则原矩形的长和宽的比应为(  )
A.2:1B.:1C.:1D.1:1

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知点M是线段AB的黄金分割点,且AM>MB,若AB=40,则AM=  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在ABCD中,AB=5,BC=8,∠ABC,∠BCD的角平分线分别交AD于E和F,BE与CF交于点G,则△EFG与△BCG面积之比是(   )
A.5:8B.25:64
C.1:4D.1:16

查看答案和解析>>

同步练习册答案