【题目】如图,正方形ABCD的边长是4,∠DAC的角平分线交DC于点E,点P、Q分别是边AD和AE上的动点(两动点不重合).
(1)PQ+DQ的最小值是 .
(2)说出PQ+DQ取得最小值时,点P、Q的位置,并在图中画出;
(3)请对(2)中你所给的结论进行证明.
【答案】(1);(2)画图见解析;(3)证明见解析.
【解析】解:(1);…………………………………………………………2分
(2)如图4,过点D作DF⊥AC,垂足为F,………………………3分
DF与AE的交点即为点Q;………………………………………………4分
过点Q作QP⊥AD,垂足即为点P;……………………………………5分
(3)由(2)知,DF为等腰Rt△ADC底边上的高,
∴DF=AD·sin45°=4×=.…………………………6分
∵AE平分∠DAC,Q为AE上的点,
且QF⊥AC于点F,QP⊥AD于点P,
∴QP=QF(角平分线性质定理),……………………………………7分
∴PQ+DQ=FQ+DQ=DF=.
下面证明此时的PQ+DQ为最小值:
在AE上取异于Q的另一点Q1(图5).…………………………………9分
①过Q1点作Q1F1⊥AC于点F1,………………………………………10分
过Q1点作Q1P1⊥AD于点P1,…………………………………………11分
则P1Q1+DQ1=F1Q1+DQ1,
由“一点到一条直线的距离”,可知,垂线段最短,
∴得F1Q1+DQ1>FQ+DQ,
即P1Q1+DQ1>PQ+DQ.…………………………………………12分
②若P2是AD上异于P1的任一点,………………………………………13分
可知斜线段P2Q1>垂线段P1Q1,………………………………………14分
∴P2Q1+DQ1>P1Q1+DQ1>PQ+DQ.
从而可得此处PQ+DQ的值最小.
此题考核正方形的性质,利用垂线段最短求证最小值
科目:初中数学 来源: 题型:
【题目】如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=﹣、y=的图象交于B、A两点,则∠OAB的大小的变化趋势为( )
A. 逐渐变小B.逐渐变大C.无法确定D.保持不变
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知a,b是正整数,若有序数对(a,b)使得的值也是整数,则称(a,b)是的一个“理想数对”,如(1,4)使得=3,所以(1,4)是的一个“理想数对”.请写出其他所有的“理想数对”: __________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】荆州古城是闻名遐迩的历史文化名城,下表是荆州古城某历史景点一周的抽样统计参观人数,图20-3-5是门票价格统计.
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
人数 | 100 | 120 | 100 | 100 | 160 | 230 | 240 |
(1)把上表中一周的参观人数作为一个样本,直接指出这个样本的中位数,众数和平均数,分析表中数据还可得到一些信息,如双休日参观人数远远高于平时等,尝试再写出两条相关信息.
(2)若“五一”黄金周有甲、乙两旅行团到该景点参观,两团人数之和恰为上述样本数 据的中位数,乙团不超过50人,设两团分别购票共付W元,甲团人数x人.①求W与x的函数关系式;②若甲团人数不超过100人,说明两团合起来购票比分开购票最多可节约多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在同一间中学就读的李浩与王真是两邻居,平时他们一起骑自行车上学,清明节后的一天,李浩因有事,比王真迟了10分钟出发,为了能赶上王真,李浩用了王真速度的1.2倍骑车追赶,结果他们在学校大门处相遇,已知他们家离学校大门处的骑车距离为15千米.求王真的速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班40名学生的某次数学成绩如下表:
成绩(分) | 50 | 60 | 70 | 80 | 90 | 100 |
人数(人) | 2 | m | 10 | n | 4 | 2 |
(1)若这班的数学成绩为69分,求m和n的值.
(2)若该班40名学生成绩的众数为X,中位数为Y.则(X-Y)2的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com