精英家教网 > 初中数学 > 题目详情
一场篮球赛中,小明跳起投篮,已知球出手时离地面高米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,若篮球运行的轨迹为抛物线,篮圈中心距离地面3米.

(1)建立如图的平面直角坐标系,求抛物线的解析式;
(2)问此球能否投中?
(1)抛物线的解析式为:;(2)此球不能准确投中.

试题分析:(1)根据抛物线的顶点坐标及球出手时的坐标,可确定抛物线的解析式;
(2)x=8,求出y的值,与3m比较即可作出判断.
试题解析:(1)由题意得,抛物线的顶点坐标为(4,4),球出手时的坐标为(0,),
设抛物线解析式为:y=a(x﹣4)2+4,
将点(0,)代入可得:16a+4=,
解得:a=,
则抛物线的解析式为:
(2)当x=8,则,
,
∴此球不能准确投中.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某批发商以每件50元的价格购进400件T恤.若以单价70元销售,预计可售出200件.批发商的销售策略是:第一个月为增加销售量,降价销售,经过市场调查,单价每降低0.5元,可多售出5件,但最低单价不低于购进的价格;第一个月结束后,将剩余的T恤一次性清仓销售,清仓时单价为40元.设第一个月单价降低x元.
(1)根据题意,完成下表:
 
每件T恤的利润(元)
销售量(件)
第一个月
 
 
清仓时
 
 
(2)T恤的销售单价定为多少元时,该批发商可获得最大利润?最大利润为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成,若花园的BC边长为x米,花园的面积为y(m2

(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)满足条件的花园面积能达到200m2吗?若能,求出此时x的值;若不能,说明理由;
(3)请结合题意,判断当x取何值时,花园的面积最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:二次函数的图象开口向上,并且经过原点.
(1)求的值;
(2)用配方法求出这个二次函数图象的顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△OAB的顶点A(﹣6,0),B(0,2),O是坐标原点,将△OAB绕点O按顺时针旋转90°,得到△ODC.

(1)写出C,D两点的坐标;
(2)求过A,D,C三点的抛物线的解析式,并求此抛物线顶点E的坐标;
(3)证明AB⊥BE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平.
(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元;
(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等;
(3)求使用回收净化设备后两年的利润总和.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=2x2﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.

(1)写出以A,B,C为顶点的三角形面积;
(2)过点E(0,6)且与x轴平行的直线l1与抛物线相交于M、N两点(点M在点N的左侧),以MN为一边,抛物线上的任一点P为另一顶点做平行四边形,当平行四边形的面积为8时,求出点P的坐标;
(3)过点D(m,0)(其中m>1)且与x轴垂直的直线l2上有一点Q(点Q在第一象限),使得以Q,D,B为顶点的三角形和以B,C,O为顶点的三角形相似,求线段QD的长(用含m的代数式表示).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,抛物线与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).

(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

把抛物线y=x2向左平移1个单位,所得的新抛物线的函数表达式为( )
A.y=x2+1B.y=(x+1) 2C.y=x2-1D.y=(x-1) 2

查看答案和解析>>

同步练习册答案