精英家教网 > 初中数学 > 题目详情
如图,△ABC的两条中线BG、CD相交于点O,点E、F分别是BO、CO的中点.
(1)说明:四边形DEFG是平行四边形;
(2)连接AO,当线段AO与BC满足怎样的位置关系时,四边形DEFG为矩形?为什么?
分析:(1)由中位线定理,可得ED∥BC,MN∥BC,且都等于边长BC的一半.分析到此,此题便可解答.
(2)连接OA,则AO∥ME∥DN;则OA和BC垂直,四边形DEFG为矩形进而求出即可.
解答:证明:(1)△ABC的边AC、AB上的中线BD、CE相交于点O,M、N分别是BO、CO的中点,
∴ED∥BC且ED=
1
2
BC,
MN∥BC且MN=
1
2
BC,
∴ED∥MN且ED=MN,
∴四边形MNDE是平行四边形.

(2)OA和BC垂直,四边形DEFG为矩形,
理由如下:
连接OA并延长交BC于点F;
∵E,M分别是AB,BO中点,
∴AO∥ME∥DN,
当△ABC为等腰三角形时,
∴AO⊥BC,
∵四边形DEMN是平行四边形,
∴EM⊥MN;
∴此时四边形DEMN是矩形.
点评:本题考查了平行四边形的判定和三角形的中位线定理,三角形的中位线的性质定理,为证明线段相等和平行提供了依据.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC的两条高BD和CE相交于点O,若△DOE的面积为2,△BOC的面积为6,那么cosA=(  )
A、
1
3
B、
1
2
C、
3
3
D、
3
2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC的两条高BE、CD相交于点O,且OB=OC,求证:△ABC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的两条角平分线BD、CE交于O,且∠A=60°,则下列结论中不正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的两条中线AD、BE相交于点G,如果S△ABG=2,那么S△ABC=
6
6

查看答案和解析>>

同步练习册答案