精英家教网 > 初中数学 > 题目详情
(2008•广州)2008年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30千米远的郊区进行抢修.维修工骑摩托车先走,15分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求两种车的速度.
【答案】分析:设摩托车速度是x千米/时,则抢修车的速度是1.5x千米/时;路程都是30千米;由时间=,两车同时到达抢修点,所用时间相等,利用这个条件建立等量关系,列方程.
解答:解法1:设摩托车的速度为x千米/时,则抢修车的速度为1.5x千米/时.
根据题意得:


∴x=40
经检验,x=40是原分式方程的根.
∴1.5x=1.5×40=60
答:摩托车的速度为40千米/时,抢修车的速度为60千米/时.
解法2:设摩托车的速度为x千米/时,则抢修车的速度为1.5x千米/时.
根据题意得:
两边同乘以6x去分母,得180=120+1.5x
即1.5x=60
∴x=40
经检验,x=40是原分式方程的根,
∴1.5x=1.5×40=60,
答:摩托车的速度为40千米/时,抢修车的速度为60千米/时.
点评:本小题主要考查建立分式方程模型解决简单实际问题的能力,考查基本的代数式计算推理能力.找到合适的等量关系是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:2008年全国中考数学试题汇编《图形的相似》(04)(解析版) 题型:解答题

(2008•广州)如图,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米.
(1)当t=4时,求S的值;
(2)当4≤t≤10,求S与t的函数关系式,并求出S的最大值.

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2008•广州)如图,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米.
(1)当t=4时,求S的值;
(2)当4≤t≤10,求S与t的函数关系式,并求出S的最大值.

查看答案和解析>>

科目:初中数学 来源:2010年山东省泰安市新泰市第一教研区中考数学预测卷(二)(解析版) 题型:解答题

(2008•广州)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点.
(1)根据图象,分别写出A、B的坐标;
(2)求出两函数解析式;
(3)根据图象回答:当x为何值时,一次函数的函数值>反比例函数的函数值.

查看答案和解析>>

科目:初中数学 来源:2009年广东省中考数学模拟试卷(B卷)(解析版) 题型:解答题

(2008•广州)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点.
(1)根据图象,分别写出A、B的坐标;
(2)求出两函数解析式;
(3)根据图象回答:当x为何值时,一次函数的函数值>反比例函数的函数值.

查看答案和解析>>

科目:初中数学 来源:2009年广东省汕头市潮南区中考数学模拟试卷(解析版) 题型:解答题

(2008•广州)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点.
(1)根据图象,分别写出A、B的坐标;
(2)求出两函数解析式;
(3)根据图象回答:当x为何值时,一次函数的函数值>反比例函数的函数值.

查看答案和解析>>

同步练习册答案