精英家教网 > 初中数学 > 题目详情
在平面内,旋转变换是指某一图形绕一个定点按顺时针或逆时针旋转一定的角度而得到新位置图形的一种变换.
活动一:如图1,在Rt△ABC中,D为斜边AB上的一点,AD=2,BD=1,且四边形DECF是正方形,求阴影部分的面积.

小明运用图形旋转的方法,将△DBF绕点D逆时针旋转90°,得到△DGE(如图2所示),一眼就看出这题的答案,请你写出阴影部分的面积:______.
活动二:如图3,在四边形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,过点A作AE⊥BC,垂足为点E,求AE的长.

小明仍运用图形旋转的方法,将△ABE绕点A逆时针旋转90°,得到△ADG(如图4所示),则①四边形AECG是怎样的特殊四边形?答:______.AE的长是______.
活动三:如图5,在四边形ABCD中,AB⊥AD,CD⊥AD,将BC按逆时针方向绕点B旋转90°得到线段BE,连接AE.若AB=2,DC=4,求△ABE的面积.
活动一:
∵四边形DECF是正方形,
∴DE=DF=x,DEBC,DFAC,
AD
AB
=
DE
BC
DF
AC
=
BD
AB

∵AD=2,BD=1,
∴AC=3x,BC=
3
2
x,
∵AC2+BC2=AB2
∴9x2+(
3
2
x)2=9,
解得:x=
2
5
5

∴DE=DF=
2
5
5
,AE=
4
5
5
,BF=
5
5

∴S△ADE+S△BDF=1,
∴S阴影=1;
故答案为:1;

活动二:根据题意得:∠EAG=90°,
∵AE⊥BC,
∴∠AEB=∠AEC=∠G=90°,
∴四边形AECG是矩形,
∵AE=AG,
∴四边形AECG是正方形,
∵BC=5,CD=3,
∴设AE=x,则BE=GD=CG-CD=x-3,
BE=BC-EC=5-x,
∴x-3=5-x,
解得:x=4,
∴AE=4.
故答案为:正方形,4;

活动三:过点B作BG⊥DC于点G,过点E作EF⊥AB与AB的延长线交于点F.
∵∠BAD=∠D=∠DGB=90°,
∴四边形ABGD是矩形,
∴DG=AB=2,
∴CG=DC-DG=4-2=2.
∵∠CBG+∠CBF=90°,∠EBF+∠CBF=90°,
∴∠CBG=∠EBF.
在△BCG与△BEF中,∠CBG=∠EBF,∠CGB=∠EFB=90°,BC=BE,
∴△BCG≌△BEF,
∴CG=EF=2.
∴S△ABE=
1
2
AB•EF=2.(10分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图2作为“基本图形”绕着A点经过逆时针连续旋转得到图2.两次旋转的角度分别为(  )
A.45°,90°B.90°,45°C.60°,30°D.30°,60°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1)正方形ABCD和正方形AEFG,边AE在边AB上,AB=12,AE=6
2
.将正方形AEFG绕点A逆时针旋转α(0°≤α≤45°)
(1)如图(2)正方形AEFG旋转到此位置,求证:BE=DG;
(2)在旋转的过程中,当∠BEA=120°时,试求BE的长;
(3)BE的延长线交直线DG于点Q,当正方形AEFG由图(1)绕点A逆时针旋转45°,请直接写出旋转过程中点Q运动的路线长;
(4)在旋转的过程中,是否存在某时刻BF=BC?若存在,试求出DQ的长;若不存在,请说明理由.(点Q即(3)中的点)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△PQR是△ABC经过某种变换后得到的图形.如果△ABC中任意一点M的坐标为(a,b),那么它的对应点N的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在正方形网格中,建立如图所示的平面直角坐标系xoy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1,B1,C1的坐标;
(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C,并写出点A2,B2的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,正方形ABCD和过其对角线交点O的正方形OEFG的边长相等,OE交AB于M,OG交BC于N.
(1)求证:△AOM≌△BON;
(2)当四边形MONB的面积为1时,求正方形的边长;
(3)在(2)的条件下,如果正方形OEFG绕点O逆时针转动,使顶点E刚好落在CB的延长线上如图2,并过O作OH⊥BC垂足为H,求MB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

同学们曾玩过万花筒,它是由三块等长的玻璃片围成的.如图,是在万花筒中看到的一个图案.图中所有小三角形均是全等的等边三角形,其中的菱形AEFG可以看成把菱形ABCD以A为旋转中心(  )
A.顺时针旋转60°得到的B.顺时针旋转120°得到的
C.逆时针旋转60°得到的D.逆时针旋转120°得到的

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,根据要求画图.
(1)把△ABC向右平移5个方格,画出平移的图形.
(2)以点B为旋转中心,把△ABC顺时针方向旋转90度,画出旋转后的图形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

作图题(保留痕迹,不写作法)
如图,在10×5的正方形网格中,每个小正方形边长均为单位1,将△ABC向右平移4个单位,得到△A1B1C1,再把△A1B1C1绕点A1按逆时针方向旋转90°得到△A2B2C2,请画出△A1B1C1和△A2B2C2

查看答案和解析>>

同步练习册答案