精英家教网 > 初中数学 > 题目详情
(2006•日照)如图,已知抛物线与x轴交于A(m,0)、B(n,0)两点,与y轴交于点C(0,3),点P是抛物线的顶点,若m-n=-2,m•n=3.
(1)求抛物线的表达式及P点的坐标;
(2)求△ACP的面积S△ACP

【答案】分析:(1)根据C点的坐标,可设抛物线的解析式为y=ax2+bx+3,根据韦达定理有m+n=-,mn=,然后联立m-n=-2、mn=3即可求出a、b的值,也就能得出抛物线的解析式,根据抛物线的解析式可用配方法或公式法求出抛物线的顶点坐标.
(2)设直线CP与x轴的交点为D,可求出直线CP的解析式进而确定出D点的坐标,即可求得AD的长,然后将三角形ACP分成三角形ADC和APD两部分进行求解即可.
解答:解:(1)设抛物线的表达式为y=ax2+bx+c,
∵抛物线过C(0,3),
∴c=3,
又∵抛物线与x轴交于A(m,0)、B(n,0)两点,
∴m、n为一元二次方程ax2+bx+3=0的解,
∴m+n=-,mn=
由已知m-n=-2,m•n=3,
∴解之得a=1,b=-4;m=1,n=3,
∴抛物线的表达式为y=x2-4x+3,P点的坐标是(2,-1)

(2)由(1)知,抛物线的顶点P(2,-1),
设直线CP的解析式为y=kx+3,则有:
2k+3=-1,k=-2
∴直线CP的解析式为y=-2x+3.
设直线CP与x轴的交点为D,则有D(,0)
∴AD=-1=
∴S△ACP=S△ACD+S△APD=×3×+×1×=1.
点评:本题考查了二次函数解析式的确定、韦达定理、图形面积的求法等知识点.
练习册系列答案
相关习题

科目:初中数学 来源:2006年山东省日照市中考数学试卷(解析版) 题型:解答题

(2006•日照)如图,已知抛物线与x轴交于A(m,0)、B(n,0)两点,与y轴交于点C(0,3),点P是抛物线的顶点,若m-n=-2,m•n=3.
(1)求抛物线的表达式及P点的坐标;
(2)求△ACP的面积S△ACP

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《反比例函数》(04)(解析版) 题型:填空题

(2006•日照)如图,⊙O的直径AB=12,AM和BN是它的两条切线,切点分别为A,B,DE切⊙O于E,交AM于D,交BN于C;设AD=x,BC=y,则y与x的函数关系式是   

查看答案和解析>>

科目:初中数学 来源:2010年湖北省黄冈市数学中考精品试卷之一(解析版) 题型:填空题

(2006•日照)如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45°,且AE+AF=,则平行四边形ABCD的周长是   

查看答案和解析>>

科目:初中数学 来源:2006年山东省日照市中考数学试卷(解析版) 题型:选择题

(2006•日照)如图,点P是⊙O的直径BA延长线上一点,PC与⊙O相切于点C,CD⊥AB,垂足为D,连接AC,BC,OC,那么下列结论中:①PC2=PA•PB;②PC•OC=OP•CD;③OA2=OD•OP.正确的有( )

A.0个
B.1个
C.2个
D.3个

查看答案和解析>>

同步练习册答案