【题目】如图1,四边形ABCD是菱形,AD=5,过点D作AB的垂线DH,垂足为H,交对角线AC于M,连接BM,且AH=3.
(1)求证:DM=BM;
(2)求MH的长;
(3)如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式;
(4)在(3)的条件下,当点P在边AB上运动时是否存在这样的 t值,使∠MPB与∠BCD互为余角,若存在,则求出t值,若不存,在请说明理由.
【答案】(1)证明见解析(2);(3); (4).
【解析】试题分析:(1)根据全等三角形的判定和性质即可得到结论;
(2)根据勾股定理即可得到结论;
(3)由△BCM≌△DCM计算出BM=DM,分两种情况计算即可;
(4)由菱形的性质判断出△ADM≌△ABM,再判断出△BMP是等腰三角形,即可得出结论.
试题解析:解:(1)∵AC是菱形ABCD的对角线,∴∠ACD=∠ACB,CD=CB.在△DCM和△BCM中,∵CD=CB,∠DCM=∠BCM,CM=CM,∴△DCM≌△BCM,∴DM=BM;
(2)在Rt△ADH中,AD=5,AH=3,∴DH=4.在Rt△BHM中,BM=DM,HM=DH﹣DM=4﹣DM,BH=AB﹣AH=2,根据勾股定理得:DM2﹣MH2=BH2,即:DM2﹣(4﹣DM)2=4,∴DM=,∴MH=;
(3)在△BCM和△DCM中,∵CM=CN,∠ACD=∠ACB,CB=CD,∴△BCM≌△DCM,∴BM=DM=,∠CDM=∠CBM=90°.
①当P在AB之间时,即0<t<2.5时,S=(5﹣2t)×=﹣t+;
②当P在BC之间时,即2.5<t≤5时,S=(2t﹣5)×=t﹣;
综上所述: ;
(4)存在.∵∠ADM+∠BAD=90°,∠BCD=∠BAD,∴∠ADM+∠BCD=90°.∵∠MPB+∠BCD=90°,∴∠MPB=∠ADM.∵四边形ABCD是菱形,∴∠DAM=∠BAM.∵AM=AM,∴△ADM≌△ABM,∴∠ADM=∠ABM,∴∠MPB=∠ABM.∴MP=MB.∵MH⊥AB,∴PH=BH=2,∴BP=2BH=4.∵AB=5,∴AP=1,∴t==.
科目:初中数学 来源: 题型:
【题目】已知△ABC是等腰直角三角形,AB=,把△ABC沿直线BC向右平移得到△DEF.如果E是BC的中点,AC与DE交于P点,以直线BC为x轴,点E为原点建立直角坐标系.
(1)求△ABC与△DEF的顶点坐标;
(2)判断△PEC的形状;
(3)求△PEC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.
(1)当点P在线段AB上时,求证:△AQP∽△ABC;
(2)当△PQB为等腰三角形时,求AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF=2S△ABE , 其中结论正确的个数为( )
A.2个
B.3个
C.4个
D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示.设点A,B,C所对应数的和是p.
(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?
(2)若原点O在图中数轴上点C的右边,且CO=28,求p.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.
(1)甲、乙两队单独完成此项任务各需多少天?
(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,两直线AB,CD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7,
(1)求∠DOE的度数;
(2)若OF⊥OE,求∠COF的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com