精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AB=8,P为线段AB上一个动点,分别以AP,PB为边在AB的同侧作菱形APCDPBFE,点P,C,E在一条直线上,∠DAP=60°,M,N分别是对角线AC,BE的中点,当点P在线段AB上移动时,点M,N之间的距离最短为( )

A. B. C. 4D. 3

【答案】A

【解析】

连接PM、PN,推出∠MPN=60°+30°=90°,在RtPMN中利用勾股定理即可.

连接PM、PN.

四边形APCD,四边形PBFE是菱形,∠DAP=60°,

∴∠APC=120°,∠EPB=60°,

∵M,N分别是对角线AC,BE的中点,

∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°,

∴∠MPN=60°+30°=90°,

PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),

∴MN=

∴a=3时,MN有最小值,最小值为2

故答案选:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边ADy轴,垂足为点E,顶点A在第二象限,顶点By轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为(  )

A. B. 3 C. D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为弘扬中华传统文化,黔南州近期举办了中小学生国学经典大赛.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分单人组双人组”.

(1)小丽参加单人组,她从中随机抽取一个比赛项目,恰好抽中三字经的概率是多少?

(2)小红和小明组成一个小组参加双人组比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中唐诗且小明抽中宋词的概率是多少?请用画树状图或列表的方法进行说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.

1)本次调查的样本容量是________,这组数据的众数为________元;

2)求这组数据的平均数;

3)该校共有学生参与捐款,请你估计该校学生的捐款总数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,已知∠C=90°∠B=55°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m0m180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m为( )

A70° B70°120°

C120° D80°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线x轴于AB两点,交y轴于点C.直线经过点AC

1)求抛物线的解析式;

2)点P是抛物线上一动点,过点Px轴的垂线,交直线AC于点M,设点P的横坐标为m

①当是直角三角形时,求点P的坐标;

②作点B关于点C的对称点,则平面内存在直线l,使点MB到该直线的距离都相等.当点Py轴右侧的抛物线上,且与点B不重合时,请直接写出直线的解析式.(kb可用含m的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在中,,点分别在边上,,连接,点分别为的中点.

1)观察猜想

1中,线段的数量关系是________的度数是________

2)探究证明

绕点逆时针方向旋转到图2的位置,连接,判断的形状,并说明理由;

3)拓展延伸

绕点在平面内自由旋转,若,请直接写出面积的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax2+bx+cabc是常数,a0)的自变量x与函数值y的部分对应值如表:

x

2

1

0

1

2

yax2+bx+c

t

m

2

2

n

且当x时,与其对应的函数值y0,有下列结论:

abc0mn23是关于x的方程ax2+bx+ct的两个根;

其中,正确结论的个数是(  ).

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面直角坐标系中,一次函数yax+c和二次函数y=﹣ax2+c(a≠c)的图象大致为(  )

A.B.

C.D.

查看答案和解析>>

同步练习册答案