精英家教网 > 初中数学 > 题目详情
已知二次函数的图象经过点A(0,-3),且顶点P的坐标为(1,-4),
(1)求这个函数的关系式;
(2)试问x为何值时,函数y的值大于0.
(1)设二次函数的解析式为y=a(x-1)2-4,
把A(0,-3)代入得a×(-1)2-4=-3,
解得a=1,
所以二次函数的解析式为y=(x-1)2-4=x2-2x-3;
(2)令y=0,则x2-2x-3=0,解得x1=-1,x2=3,
即二次函数的图象与x轴的交点坐标为(-1,0)、(3,0),
所以当x<-1或x>3时,函数y的值大于0.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),
C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.
求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,以正方形ABCD平行于边的对称轴为坐标轴建立平面直角坐标系,若正方形的边长为4,求过B、M、C这三点的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左侧),点B的横坐标是1;
(1)求a的值;
(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,抛物线C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1,x2是方程x2-2x-8=0的两个根.
(1)求这条抛物线的解析式;
(2)点P是线段AB上的动点,过点P作PEAC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;
(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,给定以下五点A(-2,0)、B(1,0)、C(4,0)、D(-2,
9
2
)、E(0,-6).从这五点中选取三点,使经过这三点的抛物线满足对称轴平行于y轴.
我们约定:把经过三点A、E、B的抛物线表示为抛物线AEB.
(1)问符合条件的抛物线还有哪几条?不求解析式,请用约定的方法一一表示出来;
(2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出抛物线及直线的解析式并证明;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,4)和B(-2,0),连接AB.
(1)现将△AOB绕点A按逆时针方向旋转90°得到△AO1B1,请画出△AO1B1,并直接写出点B1、O1的坐标(注:不要求证明);
(2)求经过B、A、O1三点的抛物线对应的函数关系式,并画出抛物线的略图.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

选做题:(A)已知四边形ABCD中,ADBC,对角线AC、BD交于点O,∠OBC=∠OCB,并且______,求证:四边形ABCD是______形.(要求在已知条件中的横线上补上一个条件______,在求证中的横线上添上该四边形的形状,然后画出图形,予以证明,证明时要用上所有条件)
(B)某市市委、市府2001年提出“工业立市”的口号,积极招商引资,财政收入稳步增长,各年度财政收入如下表:
年份2001200220032004
财政收入
单位(亿元)
1010.51214.5
按这种增长趋势,请你算一算2006年该市的财政收入是多少亿元.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,
(1)求证:△ACE△CBE;
(2)若AB=8,设OE=x(0<x<4),CE2=y,请求出y关于x的函数解析式;
(3)探究:当x为何值时,tan∠D=
3
3

查看答案和解析>>

同步练习册答案