精英家教网 > 初中数学 > 题目详情
5.如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第5个图案需要的棋子数为(  )
A.61B.91C.152D.169

分析 依次求得n=1,2,3,…,图案需要的棋子枚数.再根据规律以此类推,可得出第n个图案需要的棋子枚数,进一步代入求得答案即可.

解答 解:∵n=1时,总数是6+1=7;
n=2时,总数为6×(1+2)+1=19;
n=3时,总数为6×(1+2+3)+1=37枚;
…;
∴n=n时,有6×(1+2+3+…n)+1=6×$\frac{n(n+1)}{2}$+1=3n2+3n+1枚.
∴n=5时,总数为6×(1+2+3…+5)+1=91枚.
故选:B.

点评 此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

15.如图:已知AB=16,点C、D在线段AB上且AC=DB=3; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是(  )
A.0B.3C.5D.8

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中,点A(4,0),B(3,4),C(0,2)
(1)求S四边形ABCO
(2)求S△ABC
(3)在x轴上是否存在一点P,使S△PAB=10?若存在,请求点P坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在图中,A(-1,4)、B(-4,-1)、C(1,1),将△ABC向右平移5个单位长度,再向上平移3个单位长度请回答下列问题.
(1)平移后的三个顶点坐标分别为:A1(4,7),B1(1,2),C1(6,4);
(2)画出平移后△A1B1C;
(3)求△ABC的面积;
(4)若点D在过点B1且平行于x轴的直线上,若△A1B1D的面积等于△ABC的面积,请直接写出所有满足条件点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,△ABC≌△DEF,∠C=∠DFE=90°,A与D是 对应点,要使△DEF通过几何变换与△ABC重合,必须有的变换是(  )
A.轴对称B.平移C.旋转D.中心对称

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知在二次函数y=$\frac{1}{3}$x2+$\frac{2}{3}$x-$\frac{11}{3}$中,自变量x的取值范围和函数值y的取值范围相同,即a≤x≤b且a≤y≤b,求a,b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.当x取怎样的数时,下列式子有意义.
(1)$\sqrt{(x+1)^{2}}$;
(2)$\sqrt{{x}^{2}+4}$;
(3)$\sqrt{-(x-1)^{2}}$;
(4)$\sqrt{-2x}$;
(5)$\sqrt{(2-x)^{2}}$;
(6)$\sqrt{{x}^{2}+2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.(1)$\sqrt{32}$-2(5$\sqrt{2}$-$\sqrt{18}$);
(2)$\sqrt{48}$-$\sqrt{54}$÷$\sqrt{2}$+(3-$\sqrt{3}$)(3+$\sqrt{3}$).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,AB∥CD,∠CDE=140°,则∠A的度数为(  )
A.70°B.65°C.50°D.40°

查看答案和解析>>

同步练习册答案