精英家教网 > 初中数学 > 题目详情
已知:如图,AB为⊙O的直径,PA、PC是⊙O的切线,A、C为切点,∠BAC=30°.
(1)求∠P的大小;
(2)若AB=6,求PA的长.
分析:(1)由圆的切线的性质,得∠PAB=90°,结合∠BAC=30°得∠PAC=90°-30°=60°.由切线长定理得到PA=PC,得△PAC是等边三角形,从而可得∠P=60°.
(2)连结BC,根据直径所对的圆周角为直角,得到∠ACB=90°,结合Rt△ACB中AB=6且∠BAC=30°,得到AC=ABcos∠BAC=3
3
.最后在等边△PAC中,可得PA=AC=3
3
解答:解:(1)∵PA是⊙O的切线,AB为⊙O的直径,
∴PA⊥AB,即∠PAB=90°.
∵∠BAC=30°,
∴∠PAC=90°-30°=60°.
又∵PA、PC切⊙O于点A、C,
∴PA=PC,
∴△PAC是等边三角形,
∴∠P=60°.
(2)如图,连结BC.
∵AB是直径,∠ACB=90°,
∴在Rt△ACB中,AB=6,∠BAC=30°,
可得AC=ABcos∠BAC=6×cos30°=3
3

又∵△PAC是等边三角形,
∴PA=AC=3
3
点评:本题着重考查了圆的切线的性质定理、切线长定理、直径所对的圆周角、等边三角形的判定与性质和解直角三角形等知识,掌握各知识点的运用是关键,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•东阳市模拟)已知:如图,AB为⊙O的直径,AC、BC为弦,点P为⊙O上一点,弧AC=弧AP,AB=10,tanA=
3

(1)求PC的长;
(2)过P作⊙O切线交BA延长线于E,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB为⊙O直径,AC为弦,M为弧AC上一点,若∠CAB=40度,则∠AMC的度数为
130°
130°

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB为半圆O的直径,C、D是半圆上的两点,E是AB上除O外的一点,AC与DE交于点F.①
AD
=
DC
;②DE⊥AB;③AF=DF.请你写出以①、②、③中的任意两个条件,推出第三个(结论)的一个正确命题.并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB为⊙O的直径,AO为⊙O'的直径,⊙O的弦AC交⊙O'于D点,OC和BD相交于E点,AB=4,∠CAB=30°.求CE、DE的长.

查看答案和解析>>

同步练习册答案