【题目】如图的三角形纸片中,AB=AC,BC=12cm,∠C=30°,折叠这个三角形,使点B落在AC的中点D处,折痕为EF,那么BF的长为cm.
【答案】
【解析】解:过D作DH⊥BC,过点A作AN⊥BC于点N,
∵AB=AC,
∴∠B=∠C=30°,
根据折叠可得:DF=BF,∠EDF=∠B=30°,
∵AB=AC,BC=12cm,
∴BN=NC=6cm,
∵点B落在AC的中点D处,AN∥DH,
∴NH=HC=3cm,
∴DH=3tan30°= (cm),
设BF=DF=xcm,则FH=12﹣x﹣3=9﹣x(cm),
故在Rt△DFC中,DF2=DH2+FH2 ,
故x2=( )2+(9﹣x)2 ,
解得:x= ,
即BF的长为: cm.
故答案为: .
首先过D作DH⊥BC,过点A作AN⊥BC于点N,根据题意结合等腰三角形的性质进而得出CN的长,再利用锐角三角函数关系以及勾股定理得出答案.
科目:初中数学 来源: 题型:
【题目】有一块直角三角板DEF放置在△ABC上,三角板DEF的两条直角边DE、DF恰好分别经过点B、C.△ABC中,∠A=50°,求∠DBA+∠DCA的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,EF//AD,=.说明:∠DGA+∠BAC=180°. 填空并写出推理的依据.
解:∵EF//AD,(已知)
∴=__ __ (_____________________________)
又∵=, (已知)
∴=__ _, (等量替代)
∴AB//___ ___, (_______________ _____________)
∴∠DGA+∠BAC=180° (_______________ _________)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解某校学生进行课外阅读的情况,从全校2200名学生中随机抽取了100名学生,对他们平均每天进行课外阅读的时长进行统计,样本容量是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校八年级学生在学习《数据的分析》后,进行了检测,现将该校八(1)班学生的成绩统计如下表,并绘制成条形统计图(不完整).
分数(分) | 人数(人) |
68 | 4 |
78 | 7 |
80 | 3 |
88 | 5 |
90 | 10 |
96 | 6 |
100 | 5 |
(1)补全条形统计图;
(2)该班学生成绩的平均数为86.85分,写出该班学生成绩的中位数和众数;
(3)该校八年级共有学生500名,估计有多少学生的成绩在96分以上(含96分)?
(4)小明的成绩为88分,他的成绩如何,为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先化简,再求值:
(1)(1+a)(1-a)+(a-2)2,其中a=;
(2)(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-3.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在直线l3上有点P(点P与点C、D不重合),点A在直线l1上,点B在直线l2上。
(1)如果点P在C、D之间运动时,试说明∠1+∠3=∠2;
(2)如果点P在直线l1的上方运动时,试探索∠1,∠2,∠3之间的关系又是如何?
(3)如果点P在直线l2的下方运动时,试探索∠PAC,∠PBD,∠APB之间的关系又是如何? (直接写出结论)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于_______.
【答案】10或6
【解析】试题解析:根据题意画出图形,如图所示,
如图1所示,AB=10,AC=2,AD=6,
在Rt△ABD和Rt△ACD中,
根据勾股定理得:BD==8,CD==2,
此时BC=BD+CD=8+2=10;
如图2所示,AB=10,AC=2,AD=6,
在Rt△ABD和Rt△ACD中,
根据勾股定理得:BD==8,CD==2,
此时BC=BD-CD=8-2=6,
则BC的长为6或10.
【题型】填空题
【结束】
12
【题目】在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1 ______ y2.(填“>”“<”或“=”)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com