【题目】如图,在平面直角坐标系中,已知点A(8,1),B(0,3),反比例函数(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB交于点N.
(1)求k的值;
(2)求△BMN面积的最大值;
(3)若MA⊥AB,求t的值.
【答案】(1)k=8;(2)△BMN面积最大值为;(3)
.
【解析】
(1)把点A坐标代入y=(x>0),即可求出k的值;
(2)先求出直线AB的解析式,设M(t,),N(t,
t3),则MN=
t+3,由三角形的面积公式得出△BMN的面积是t的二次函数,即可得出面积的最大值;
(3)求出直线AM的解析式,由反比例函数解析式和直线AM的解析式组成方程组,解方程组求出M的坐标,即可得出结果.
(1)把点A(8,1)代入反比例函数y=(x>0)得:1=
,
∴k=8;
(2)设直线AB的解析式为:y=kx+b(k≠0),
根据题意得:,
解得:k=,b=3,
∴直线AB的解析式为:y=x3,
设M(t,),则N(t,
t3),
∴MN=t+3,
∴△BMN的面积S=(
t+3)·t=
t2+
t+4=
(t3)2+
,
∵<0,
∴S有最大值,
当t=3时,△BMN的面积的最大值为;
(3)∵MA⊥AB,
∴设直线MA的解析式为:y=2x+c,
把点A(8,1)代入得:1=2×8+c,解得:c=17,
∴直线AM的解析式为:y=2x+17,
联立,解得:
或
(舍去),
∴M的坐标为(,16),
∴t=.
科目:初中数学 来源: 题型:
【题目】张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整.
(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,△ABC的顶点A,C分別是直线y=﹣x+4与坐标轴的交点,点B的坐标为(﹣2,0),点D是边AC上的一点,DE⊥BC于点E,点F在边AB上,且D,F两点关于y轴上的某点成中心对称,连结DF,EF.设点D的横坐标为m,EF2为l,请探究:
①线段EF长度是否有最小值.
②△BEF能否成为直角三角形.
小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题.
(1)小明利用“几何画板”软件进行观察,测量,得到l随m变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l与m可能满足的函数类别.
(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l关于m的函数表达式及自变量的取值范围,并求出线段EF长度的最小值.
(3)小明通过观察,推理,发现△BEF能成为直角三角形,请你求出当△BEF为直角三角形时m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解本校九年级学生期末数学考试情况,在九年级随机抽取了一部分学生的期末数学成绩为样本,分为(
分)、
(
分)、
(
分)、
(
分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:
(1)这次随机抽取的学生共有多少人?
(2)请补全条形统计图.
(3)这个学校九年级共有学生人,若分数为
分(含
分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生大约有多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;……按此作法继续下去,则点A2020的坐标为______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=16.连接AC,点P在线段AC上,PA=AC,作射线PM与边AB相交于点E.将射线PM绕点P逆时针旋转90°得到射线PN,射线PN与边BC相交于点F.当△AEP的面积为
时.在边CD上取一点G.则△AFG周长的最小值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题探究:如图1所示,有公共顶点A的两个正方形ABCD和正方形AEFG.AE<AB,连接BE与DG,请判断线段BE与线段DG之间有怎样的数量关系和位置关系.并请说明理由.
(2)理解应用:如图2所示,有公共顶点A的两个正方形ABCD和正方形AEFG,AE<AB,AB=10,将正方形AEFG绕点A在平面内任意旋转,当∠ABE=15°,且点D、E、G三点在同一条直线上时,请直接写出AE的长 ;
(3)拓展应用:如图3所示,有公共顶点A的两个矩形ABCD和矩形AEFG,AD=4,AB=4
,AG=4,AE=4
,将矩形AEFG绕点A在平面内任意旋转,连接BD,DE,点M,N分别是BD,DE的中点,连接MN,当点D、E、G三点在同一条直线上时,请直接写出MN的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为(小时),两车之间的阻离为
(千米),图中的折线表示
与
之间的函数关系,则图中
的值为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题探究
(1)如图①,已知与直线
,过
作
于点
,
,
的半径为
,则圆上一点
到
的距离的最小值是______;
(2)如图②,在四边形中,
,
,
,
,过点
作一条直线交边
或
于
,若
平分四边形
的面积,求
的长;
问题解决
(3)如图③所示,是由线段、
、
与弧
围成的花园的平面示意图,
,
,
//
,CD⊥BC,点
为
的中点,
所对的圆心角为
.管理人员想在
上确定一点
,在四边形
区域种植花卉,其余区域种植草坪,并过
点修建一条小路
,把四边形
分成面积相等且尽可能小的两部分,分别种植不同的花卉.问是否存在满足上述条件的小路
?若存在,请求出
的长,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com