精英家教网 > 初中数学 > 题目详情
如图,△ABC中,∠ACB=90°,∠A=30°,将△ABC绕C点按逆时针方向旋转α角(0°<α<90°)得到△DEC,设CD交AB于F,连接AD,△ADF是等腰三角形旋转角α度数为( )

A.20°
B.40°
C.20°或40°
D.60°
【答案】分析:根据旋转的性质可得AC=CD,根据等腰三角形的两底角相等求出∠ADF=∠DAC,再表示出∠DAF,根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠AFD,然后分①∠ADF=∠DAF,②∠ADF=∠AFD,③∠DAF=∠AFD三种情况讨论求解.
解答:解:∵△ABC绕C点逆时针方向旋转得到△DEC,
∴AC=CD,
∴∠ADF=∠DAC=(180°-α),
∴∠DAF=∠ADC-∠BAC=(180°-α)-30°,
根据三角形的外角性质,∠AFD=∠BAC+∠DAC=30°+α,
△ADF是等腰三角形,分三种情况讨论,
①∠ADF=∠DAF时,(180°-α)=(180°-α)-30°,无解,
②∠ADF=∠AFD时,(180°-α)=30°+α,
解得α=40°,
③∠DAF=∠AFD时,(180°-α)-30°=30°+α,
解得α=20°,
综上所述,旋转角α度数为20°或40°.
故选C.
点评:本题考查了旋转的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,难点在于要分情况讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案