
解:(1)对于直线y=x+4,令x=0,
解得:y=4,
故B(0,4),即OB=4,
∴0C=20B=8,即C(8,0),
将x=8,y=0代入直线y=-2x+b得:0=-16+b,
解得:b=16,
则直线CD的解析式为y=-2x+16;
(2)过点P作PG⊥OB于G点,连接PQ,如图2所示,
由题意得:BP=

t,DQ=2

t,
由OB=4,OC=8,根据勾股定理得:BC=

=4

,
∵∠BGP=∠BOC=90°,又∠GBP=∠OBC,
∴△BPG∽△BCO,
∴

=

=

,即

=

=

,
整理得:BG=t,GP=2t,
∴OG=OB-BG=4-t,
∴P(2t,4-t),
同理Q(2t,16-4t),
∴PQ∥y轴,
∴d=PQ=(16-4t)-(4-t)=12-3t(0≤t<4);
(3)联立直线AB与直线CD解析式得:

,
解得:

,
∴E(4,8),
由PQ∥y轴,得到N(2t,2t+4),
∴NQ=|12-6t|,
∵

=

,
∴3NQ=2PQ,
(i)当Q在DE上时,3(12-6t)=2(12-3t),
解得:t=1,
∴DQ=2

,
又E(4,8),∴DE=CE=

=4

,
∴EQ=DE-DQ=4

-2

=2

,
过C作CH⊥AB于H点,如图3所示,
∵AC=12,直线AB的解析式y=x+4的倾斜角为45°,即△ACH为等腰直角三角形,
∴CH=ACcos45°=6

,
过Q作QM⊥AB于M,
∵∠QEM=∠HEC,∠MQE=∠CHE=90°,
∴△MQE∽△HCE,
∴

=

,即

=

,
∴MQ=3

,
∴t=1时,以点Q为圆心,以3为半径的圆Q与直线AB相离;
(ii)当Q在EC上时,3(6t-12)=2(12-3t),
解得:t=

,
同理,此时以Q为圆心,以3为半径的圆Q与直线AB相交,
综上所述,t=1或t=

时,

=

;当t=1时,以点Q为圆心,以3为半径的圆Q与直线AB相离;当t=

时,此时以Q为圆心,以3为半径的圆Q与直线AB相交.
分析:(1)对于直线y=x+4,令x=0求出对应的y值,即为B的纵坐标,确定出B的坐标,得到OB的长,由OC=2OB,求出OC的长,确定出C的坐标,将C的坐标代入直线y=-2x+b中,求出b的值,进而确定出直线CD的解析式;
(2)过P作PG垂直于y轴于G点,连接PQ,由路程=速度×时间,表示出BP与DQ,由一对直角相等,以及一对公共角,利用两对对应角相等的两三角形相似得到三角形BGP与三角形BOC相似,根据OB与OC,利用勾股定理求出BC的长,由相似得比例,将各自的值代入表示出BG和GP,由OB-BG表示出OG,进而表示出P的坐标,同理表示出Q的坐标,由P与Q横坐标相等,得到PQ平行于y轴,可得出d为Q与P纵坐标之差,表示即可,并由d大于0求出t的范围;
(3)联立直线AB与直线CD解析式,得到关于x与y的方程组,求出方程组的解得到x与y的值,确定出交点E的坐标,由PQ与y轴平行,得到N横坐标与P、Q相同,都为2t,将x=2t代入直线AB解析式中求出对应的y值,即为N的纵坐标,表示出N的坐标,由Q与N的纵坐标之差表示出|NQ|,再由NQ:PQ=2:3,得到3NQ=2PQ,然后根据Q的位置分两种情况考虑:(i)当Q在DE边上时,得到NQ=12-6t,再由PQ=12-3t,代入比例式中列出关于t的方程,求出方程的解得到t的值,进而确定出DQ的长,由E的坐标,利用勾股定理求出DE与CE的长,由EQ=DE-DQ求出EQ的长,过C作CH垂直于直线AB,由AC的长,及直线的倾斜角为45°,得到三角形ACH为等腰直角三角形,利用锐角三角形函数定义求出CH的长,再过Q作QM垂直于直线AB,由一对直角相等及对顶角相等,利用两对对应角相等的两三角形相似,得到三角形QME与三角形CHE相似,由相似得比例,将各自的值求出MQ的长,根据MQ的长大于半径3,得到此时圆Q与直线AB相离;(ii)当Q在EC上时,同理得到NQ=6t-12,求出此时t的值,得到此时圆Q与直线AB相交.
点评:此题考查了一次函数与坐标轴的交点,相似三角形的判定与性质,勾股定理,坐标与图形性质,等腰直角三角形的判定与性质,直线与圆的位置关系,利用了转化及分类讨论的数学思想,是一道中考中的常考的压轴题.