精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A、B两点,过A、B两点的抛物线为y=﹣x2+bx+c.点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点E.

(1)求抛物线的解析式.
(2)当DE=4时,求四边形CAEB的面积.
(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求此点D坐标;若不存在,说明理由.
(1)y=﹣x2﹣3x+4。
(2)12
(3)存在点D,使得△DBE和△DAC相似,点D的坐标为(﹣3,1)或(﹣2,2)。

试题分析:(1)首先求出点A、B的坐标,然后利用待定系数法求出抛物线的解析式。
(2)设点C坐标为(m,0)(m<0),根据已知条件求出点E坐标为(m,8+m);由于点E在抛物线上,则可以列出方程求出m的值.在计算四边形CAEB面积时,利用S四边形CAEB=SACE+S梯形OCEB﹣SBCO,可以简化计算。
(3)由于△ACD为等腰直角三角形,而△DBE和△DAC相似,则△DBE必为等腰直角三角形。分∠BED=90°和∠EBD=90°两种情况讨论。
解:(1)在直线解析式y=x+4中,令x=0,得y=4;令y=0,得x=﹣4,
∴A(﹣4,0),B(0,4)。
∵点A(﹣4,0),B(0,4)在抛物线y=﹣x2+bx+c上,
,解得:
∴抛物线的解析式为:y=﹣x2﹣3x+4。
(2)设点C坐标为(m,0)(m<0),则OC=﹣m,AC=4+m。
∵OA=OB=4,∴∠BAC=45°。∴△ACD为等腰直角三角形。∴CD=AC=4+m。
∴CE=CD+DE=4+m+4=8+m。∴点E坐标为(m,8+m)。
∵点E在抛物线y=﹣x2﹣3x+4上,∴8+m=﹣m2﹣3m+4,解得m=﹣2。
∴C(﹣2,0),AC=OC=2,CE=6。
∴S四边形CAEB=SACE+S梯形OCEB﹣SBCO=×2×6+(6+4)×2﹣×2×4=12。
(3)设点C坐标为(m,0)(m<0),
则OC=﹣m,CD=AC=4+m,BD=OC=﹣m,则D(m,4+m)。
∵△ACD为等腰直角三角形,若△DBE和△DAC相似,则△DBE必为等腰直角三角形。
i)若∠BED=90°,则BE=DE,
∵BE=OC=﹣m,∴DE=BE=﹣m。∴CE=4+m﹣m=4。∴E(m,4)。
∵点E在抛物线y=﹣x2﹣3x+4上,
∴4=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣3。∴D(﹣3,1)。
ii)若∠EBD=90°,则BE=BD=﹣m,
在等腰直角三角形EBD中,DE=BD=﹣2m,∴CE=4+m﹣2m=4﹣m。∴E(m,4﹣m)。
∵点E在抛物线y=﹣x2﹣3x+4上,
∴4﹣m=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣2。
∴D(﹣2,2)。
综上所述,存在点D,使得△DBE和△DAC相似,点D的坐标为(﹣3,1)或(﹣2,2)。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:直线过抛物线的顶点P,如图所示.

(1)顶点P的坐标是     
(2)若直线y=ax+b经过另一点A(0,11),求出该直线的表达式;
(3)在(2)的条件下,若有一条直线y=mx+n与直线y=ax+b关于x轴成轴对称,求直线y=mx+n与抛物线的交点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

直线与x、y轴分别交于点A、C.抛物线的图象经过A、C和点B(1,0).

(1)求抛物线的解析式;
(2)在直线AC上方的抛物线上有一动点D,当D与直线AC的距离DE最大时,求出点D的坐标,并求出最大距离是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,
给出下列命题:
①abc<0;②b>2a;③a+b+c=0
④ax2+bx+c=0的两根分别为﹣3和1;
⑤8a+c>0.其中正确的命题是               

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与x轴交于点A和点B,与y轴交于点C,已知点B的坐标为(3,0).

(1)求a的值和抛物线的顶点坐标;
(2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等;
(3)设N是抛物线对称轴上的一个动点,d=|AN﹣CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线于点B、C,则BC的长值为   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是
A.a<0
B.b2﹣4ac<0
C.当﹣1<x<3时,y>0
D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线与x轴交于点A、B,与y轴交于点C,则△ABC的面积为             

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点P是直线上的点,过点P的另一条直线交抛物线于A、B两点.

(1)若直线的解析式为,求A、B两点的坐标;
(2)①若点P的坐标为(-2,),当PA=AB时,请直接写出点A的坐标;
②试证明:对于直线上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立.
(3)设直线轴于点C,若△AOB的外心在边AB上,且∠BPC=∠OCP,求点P的坐标.

查看答案和解析>>

同步练习册答案