分析 先去绝对值符号,再求出方程组的解即可.
解答 解:当x≥0,y≥0时,原方程组可化为$\left\{\begin{array}{l}{x+y=1}\\{x+2y=3}\end{array}\right.$①或$\left\{\begin{array}{l}{x+y=-1}\\{x+2y=3}\end{array}\right.$②;
当x>0,y<0时,原方程组可化为$\left\{\begin{array}{l}{x+y=1}\\{x-2y=3}\end{array}\right.$③或$\left\{\begin{array}{l}{x+y=-1}\\{x-2y=3}\end{array}\right.$④;
当x<0,y≥0时,原方程组可化为$\left\{\begin{array}{l}{x+y=1}\\{-x+2y=3}\end{array}\right.$⑤或$\left\{\begin{array}{l}{x+y=-1}\\{-x+2y=3}\end{array}\right.$⑥;
当x<0,y<0时,原方程组可化为$\left\{\begin{array}{l}{x+y=1}\\{-x-2y=3}\end{array}\right.$⑦或$\left\{\begin{array}{l}{x+y=-1}\\{-x-2y=3}\end{array}\right.$⑧.
解①得$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$(不合题意);解②$\left\{\begin{array}{l}{x=-5}\\{y=4}\end{array}\right.$(不合题意);解③得$\left\{\begin{array}{l}{x=\frac{5}{3}}\\{y=-\frac{2}{3}}\end{array}\right.$;解④得$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=-\frac{4}{3}}\end{array}\right.$;
解⑤得$\left\{\begin{array}{l}{x=-\frac{1}{3}}\\{y=\frac{4}{3}}\end{array}\right.$;解⑥得$\left\{\begin{array}{l}{x=-\frac{5}{3}}\\{y=\frac{2}{3}}\end{array}\right.$;解⑦得$\left\{\begin{array}{l}{x=5}\\{y=-4}\end{array}\right.$(不合题意);解⑧得$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$(不合题意).
故原方程组的解为:$\left\{\begin{array}{l}{x=\frac{5}{3}}\\{y=-\frac{2}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=-\frac{4}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=-\frac{1}{3}}\\{y=\frac{4}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=-\frac{5}{3}}\\{y=\frac{2}{3}}\end{array}\right.$.
点评 本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1cm,2cm,3.5cm | B. | 3cm,4cm,6cm | C. | 4cm,5cm,9cm | D. | 3cm,3cm,6cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com