精英家教网 > 初中数学 > 题目详情

在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.
(1)当直线MN绕点C旋转到如图1的位置时,
①通过观察、猜想,△ADC和△CEB的关系是:______;
②猜想DE、AD、BE三者之间满足的数量关系是:______;
③请证明你的上述两个猜想.
(2)当直线MN绕着点C顺时针旋转到MN与AB相交于点F(AF>BF)的位置(如图2所示)时,请直接写出下列问题的答案:
①请你判断△ADC和△CEB还具有(1)中①的关系吗?
②猜想DE、AD、BE三者之间具有怎样的数量关系.

解:(1)①△ADC≌△CEB,
②DE=AD+BE;
③∵∠ADC=∠BEC=90°,∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,
∴∠DAC=∠BCE,
∵AC=BC,
∴△ADC≌△CEB(AAS),
∴AD=CE,CD=BE,
∴DE=AD+BE;

(2)①成立,△ADC≌△CEB,
②DE=AD-BE.
分析:(1)①由已知推出∠ADC=∠BEC=90°,因为∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根据AAS即可得到答案;
②由(1)得到AD=CE,CD=BE,即可求出DE=AD+BE;
(2)与(1)证法类似可证出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到DE=AD-BE.
点评:本题主要考查了旋转的性质、邻补角的意义,全等三角形的性质和判定等知识点,能根据已知证出符合全等的条件是解此题的关键,题型较好,综合性比较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,AC=8,BC=6,AB=10,则△ABC的外接圆半径长为(  )
A、10B、5C、6D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

17、在△ABC中,AC=5,中线AD=4,那么边AB的取值范围为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,AC与⊙O相切于点A,AC=AB=2,⊙O交BC于D.
(1)∠C=
45
45
°;
(2)BD=
2
2

(3)求图中阴影部分的面积(结果用π表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松江区二模)如图,已知在△ABC中,AC=15,AB=25,sin∠CAB=
45
,以CA为半径的⊙C与AB、BC分别交于点D、E,联结AE,DE.
(1)求BC的长;
(2)求△AED的面积.

查看答案和解析>>

同步练习册答案