解:(1)①△ADC≌△CEB,
②DE=AD+BE;
③∵∠ADC=∠BEC=90°,∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,
∴∠DAC=∠BCE,
∵AC=BC,
∴△ADC≌△CEB(AAS),
∴AD=CE,CD=BE,
∴DE=AD+BE;
(2)①成立,△ADC≌△CEB,
②DE=AD-BE.
分析:(1)①由已知推出∠ADC=∠BEC=90°,因为∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根据AAS即可得到答案;
②由(1)得到AD=CE,CD=BE,即可求出DE=AD+BE;
(2)与(1)证法类似可证出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到DE=AD-BE.
点评:本题主要考查了旋转的性质、邻补角的意义,全等三角形的性质和判定等知识点,能根据已知证出符合全等的条件是解此题的关键,题型较好,综合性比较强.