精英家教网 > 初中数学 > 题目详情

(满分12分)如图,已知是⊙O的直径,是弦,过点作OD⊥AC于,连结

1.(1)求证:

2.(2)若,求∠的度数.

 

 

1.证法一:是⊙O的直径

      ······················· (2分)

    又

      ······················· (4分)

      ······················ (6分)

证法二:是⊙O的直径

      ················ (2分)

     即

    

    又  ······················ (3分)

      ··················· (4分)

      ···················· (5分)

     

2.(2)(6分)

解:是⊙O的直径,

      ······················· (3分)

     

解析:略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本小题满分12分)如图,在平面直角坐标系中,已知矩形的三个顶点.抛物线两点.

(1)直接写出点的坐标,并求出抛物线的解析式;
(2)动点从点出发,沿线段向终点运动,同时点从点出发,沿线段向终点运动,速度均为每秒1个单位长度,运动时间为秒.过点于点
过点于点,交抛物线于点.当为何值时,线段最长?

查看答案和解析>>

科目:初中数学 来源:2010年安徽省芜湖市初中毕业学业考试模拟试卷数学卷 题型:解答题

(本小题满分12分)如图,在平面直角坐标系中,已知矩形的三个顶点.抛物线两点.

(1)直接写出点的坐标,并求出抛物线的解析式;
(2)动点从点出发,沿线段向终点运动,同时点从点出发,沿线段向终点运动,速度均为每秒1个单位长度,运动时间为秒.过点于点
过点于点,交抛物线于点.当为何值时,线段最长?

查看答案和解析>>

科目:初中数学 来源:2011-2012年湖北省荆州市芦陵中学九年级第二次质检试题数学卷 题型:解答题

(本题满分12分)如图甲,分别以两个彼此相邻的正方形?OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=14x2+bx+c经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.

【小题1】(1)求B点坐标;
【小题2】(2)求证:ME是⊙P的切线;
【小题3】(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,①求△ACQ周长的最小值;
②若FQ=t,SACQ=S,直接写出S与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年部分学校九年级下学期联考数学卷 题型:解答题

(本题满分12分) 如图所示,在平面直角坐标系中,矩形ABOC的边OB在x轴的负半轴上,边OC在y轴的正半轴上,且AB=1,OB=,矩形ABOC绕点O按顺时针方向旋转60°后得矩形EFOD. 点A的对应点为点E,点B的对应点为F,点C的对应点为点D.  抛物线过点A、E、D.

1.(1) 判断点E是否在y轴上,并说明理由;

2.(2)求抛物线的解析式;

3.(3)在x 轴的上方是否存在点P、Q,使以点O、B、P、Q为顶点的平行四边形的面积是矩形ABOC的面积的2倍,且点P在抛物线上,若存在,求P、Q两点的坐标,若不存在,请说明理由。

 

查看答案和解析>>

科目:初中数学 来源:2011-2012年湖北省荆州市九年级第二次质检试题数学卷 题型:解答题

(本题满分12分)如图甲,分别以两个彼此相邻的正方形?OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=14x2+bx+c经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.

1.(1)求B点坐标;

2.(2)求证:ME是⊙P的切线;

3.(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,①求△ACQ周长的最小值;

②若FQ=t,SACQ=S,直接写出S与t之间的函数关系式.

 

查看答案和解析>>

同步练习册答案