精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,.则的长为__________;若边上一点,将沿所在直线翻折得到,则当时,的值为__________

【答案】7

【解析】

1)如图1(见解析),过点C于点G,先根据等腰直角三角形的判定与性质求出的长,再根据勾股定理求出的长,然后根据线段的和差即可得;

2)如图2(见解析),过点F于点H,先根据折叠的性质、平行线的性质得出,再根据相似三角形的判定与性质得出AF的长,从而可得BF的长,然后根据等腰直角三角形的判定与性质得出BHFH的长,从而可得CH的长,最后根据正切的定义即可得.

1)如图1,过点C于点G

是等腰直角三角形

中,

故答案为:7

2)由折叠的性质得:

中,

,即

解得

如图2,过点F于点H

是等腰直角三角形

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE

(Ⅰ)求证:∠A=∠EBC

(Ⅱ)若已知旋转角为50°,∠ACE130°,求∠CED和∠BDE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明根据学习函数的经验,对函数的图象与性质进行了探究.

下面是小明的探究过程,请补充完整:

1)函数的自变量的取值范围是__________

2)下表列出了的几组对应值,请写出的值:________________

1

2

3

4

2

3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象.

4)结合函数的图象,请完成:

①当时,________

②写出该函数的一条性质______________________________

③若方程有两个相等的实数根,则的值是____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=-x2+bx+c与x轴相交于A(-1,0),B(5,0)两点.

(1)求抛物线的解析式;

(2)在第二象限内取一点C,作CD垂直x轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;

(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分块计数法:对有规律的图形进行计数时,有些题可以采用分块计数的方法.

例如:图16个点,图212个点,图318个点,……,按此规律,求图10、图n有多少个点?

我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是      

请你参考以上分块计数法,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:

(1)第5个点阵中有   个圆圈;第n个点阵中有   个圆圈.

(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形中,,点边上一点,且.点是直线上一点且在点的右侧,,点从点出发,沿射线方向以每秒1个单位长度的速度运动,设运动时间为秒.以为圆心,为半径作半圆,交直线分别于点(点的左侧).

1)当秒时,的长等于____________________秒时,半圆相切;

2)当点与点重合时,求半圆被矩形的对角线所截得的弦长;

3)若,求扇形的面积.

(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知函数与反比例函数x0)的图象交于点A.将的图象向下平移6个单位后与双曲线交于点B,与x轴交于点C

1)求点C的坐标;

2)若,求反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地区一种商品的需求量y1(单位:万件)、供应量y2(单位;万件)与价格x(单位:/件)分别近似满足下列函数关系式:y1-x60y22x-36.需求量为0时,即停止供应.当y1y2时,该商品的价格称为稳定价格,需求量称为稳定需求量.

1)求该商品的稳定价格与稳定需求量;

2)价格在什么范围时,该商品的需求量低于供应量;

3)当需求量高于供应量时,政府常通过对供应方提供价格补贴来提高供货价格,以提高供应量.现若要使稳定需求量增加4万件,政府应对每件商品提供多少元补贴才能使供应量等于需求量?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形的顶点分别在轴、轴上,对角线轴,反比例函数的图象经过矩形对角线的交点,若点,则的值为__________

查看答案和解析>>

同步练习册答案