分析 (1)等腰△ABE中,∠BAD=∠ABE;由同角的余角相等知,∠BAD=∠C,故有∠C=∠ABF.由圆周角定理知,$\widehat{AB}$=$\widehat{AF}$;
(2)由于∠EAH=∠AHB,可得出AE=EH=BE=$\frac{1}{2}$BH,易证得Rt△ABH∽Rt△ACB.则AH:AB=BH:BC,即AH•BC=2AB•BE,由于AB=AF,于是得到结论.
解答 证明:(1)∵AE=BE,
∴∠BAD=∠ABE,
∵BC是直径,AD⊥BC,
∴∠ADB=∠BAC=90°,
∴∠ABD+∠BAD=∠ABC+∠C=90°,
∴∠BAD=∠C,
∴∠C=∠ABF,
∴$\widehat{AB}$=$\widehat{AF}$;
(2)∵∠C=∠ABF,
Rt△ABH∽Rt△ACB,
∴AH:BH=AB:BC,即AH•BC=AB•BH,
∵∠EAH+∠BAD=∠AHB+∠ABH=90°,∠BAD=∠ABE,
∴∠EAH=∠AHB,
∴AE=EH=BE=$\frac{1}{2}$BH,
∴AH•BC=2AB•BE,
由(1)证得$\widehat{AB}$=$\widehat{AF}$,
∴AB=AF,
∴AH•BC=2AF•BE.
点评 本题考查了等腰三角形的性质、圆周角定理、相似三角形的判定和性质,熟练掌握各定理是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
x | -1 | 0 | 0.5 | 2 |
y | -1 | 2 | 3.75 | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com