精英家教网 > 初中数学 > 题目详情

已知⊙O的半径为1,以O为原点,建立如图所示的直角坐标系.有一个正方形ABCD,顶点B的坐标为(-,0),顶点A在x轴上方,顶点D在⊙O上运动.

(1)当点D运动到与点A、O在一条直线上时,CD与⊙O相切吗?如果相切,请说明理由,并求出OD所在直线对应的函数表达式;如果不相切,也请说明理由;

(2)设点D的横坐标为x,正方形ABCD的面积为S,求出S与x的函数关系式,并求出S的最大值和最小值.

答案:
解析:

  解:(1)与⊙O相切.

  因为在一直线上,

  所以,所以是⊙O的切线.

  与⊙O相切时,有两种情况:

  ①切点在第二象限时(如图①),

  设正方形的边长为

  则

  解得,或(舍去).

  过点

  则Rt△Rt△

  所以,所以

  ,所以点的坐标是

  所以所在直线对应的函数表达式为

  ②切点在第四象限时(如图②),

  设正方形的边长为,则

  解得(舍去),或

  过点,则Rt△Rt△

  所以,所以

  所以点的坐标是

  所以所在直线对应的函数表达式为

  (2)如图③,过点,连接

  则

  

  所以

  因为,所以的最大值为

  的最小值为


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、已知⊙O1的半径为3,⊙O2的半径为2,若⊙O1与⊙O2相切,则O1,O2的距离为
5或1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知⊙O的半径为2,以⊙O的弦AB为直径作⊙M,点C是⊙O优弧
AB
上的一个动点(不与精英家教网点A、点B重合).连接AC、BC,分别与⊙M相交于点D、点E,连接DE.若AB=2
3

(1)求∠C的度数;
(2)求DE的长;
(3)如果记tan∠ABC=y,
AD
DC
=x(0<x<3),那么在点C的运动过程中,试用含x的代数式表示y.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知⊙O的半径为4,A为线段PO的中点,当OP=10时,点A与⊙O的位置关系为(  )
A、在圆上B、在圆外C、在圆内D、不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

已知球的半径为R=0.53,根据球的体积公式V=
43
πR3
,求球体的体积(π取3.14,保留两个有效数字)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知圆的半径为4cm,直线和圆相离,则圆心到直线的距离d的取值范围是
d>4cm
d>4cm

查看答案和解析>>

同步练习册答案