精英家教网 > 初中数学 > 题目详情
如图,PA﹑PB是⊙O的切线,A﹑B 是切点,AC是⊙O的直径,∠ACB=70º.求∠P的度数.
40º.

试题分析:根据PA,PB分别是⊙O的切线得到PA⊥OA,PB⊥OB,在四边形AOBP中根据内角和定理,就可以求出∠P的度数.
试题解析:
∵PA、PB是⊙O的切线,A、B是切点,
∴PA=PB,∠PAC=900
∴∠PAB=∠PBA
∠P=1800-2∠PAB
又∵AC是⊙O的直径
∴∠ABC=900
∴∠BAC=900-∠ACB=200
∠PAB=900-200=700
∴∠P=180º-2×70º=40º.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在⊙O中,AB为⊙O的直径,AC为弦,OC=4,∠OAC=60°.

(1)求∠AOC的度数;
(2)在图(1)中,P为直径BA的延长线上一点,且,求证:PC为⊙O的切线.
(3)如图(2),一动点M从A点出发,在⊙O上按逆时针方向运动一周(点M不与点C重合),当时,求动点M所经过的弧长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,,M是弧AB的中点,OC⊥OD,△COD绕点O旋转与△AMB的两边分别交于E、F(点E、F与点A、B、M均不重合),与⊙O分别交于P、Q两点.

(1)求证:
(2)连接PM、QM,试探究:在△COD绕点O旋转的过程中,∠PMQ是否为定值?若是,求出∠PMQ的大小;若不是,请说明理由;
(3)连接EF,试探究:在△COD绕点O旋转的过程中,△EFM的周长是否存在最小值?若存在,求出其最小值;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,Rt△ABC中,∠C=90°,AC=6,BC=8.则△ABC的内切圆半径r=         

 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在Rt△ACB中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A.

(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若AD∶AO=8∶5,BC=3,求BD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知⊙O的半径为4,CD为⊙O的直径,AC为⊙O的弦,B为CD延长线上的一点,∠ABC=30°,且AB=AC。

(1)求证:AB是⊙O的切线;
(2)求弦AC的长;
(3)求图中阴影部分的面积。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点A、B、C在⊙O上,若∠BAC=24°,则∠BOC的度数是(    )

A.12°           B.24°          C.48°         D.84°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,四边形OABC为菱形,点A.B在以O为圆心的上,若OA=1,∠1=∠2,则扇形ODE的面积为         

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示的工件是从半圆型铁板上截取的,阴影部分为其横截面,已知图中AC=4cm,BD⊥AC于B,AB=1cm,则该工件的横截面大约是_________cm(结果保留和根号)

查看答案和解析>>

同步练习册答案