精英家教网 > 初中数学 > 题目详情
请阅读下列材料:
(1)问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及
PG
PC
的值.
(2)实验与探究:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.
写出上面问题中线段PG与PC的位置关系
垂直
垂直
; 及
PG
PC
=
3
3

(3)归纳与发现:将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.
运用与拓广:
若图1中∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG绕点B顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出
PG
PC
的值(用含α的式子表示).
分析:(1)PG⊥PC,且
PG
PC
=
3
,理由为:延长PG,与DC交于点H,如图1所示,可通过构建全等三角形求解.延长GP交DC于H,可证△DHP和△PGF全等,已知的有DC∥GF,根据平行线间的内错角相等可得出两三角形中两组对应的角相等,又有DP=PF,因此构成了全等三角形判定条件中的(AAS),得出两三角形全等,于是△CHG就是等腰直角三角形且CP是底边上的中线,根据等腰三角形三线合一的特点,即可得出CP⊥PG;又△CHG是个等腰三角形,得出顶角为120°,可根据三角函数来得出PG、CP的比例关系;
(2)在(1)中得到的两个结论不发生变化,即PG⊥PC,且
PG
PC
=
3
,理由为:延长CP,与AB交于M点,连接CG,MG,构造全等三角形,可证三角形CBG与三角形MFG全等,先同(1)证明三角形CDP与三角形PFM全等,得到CP=MP,DC=MF,由DC=CB得到CB=MF,再由菱形BEFG得到BG=FG,再由一对角相等,利用SAS可得出三角形CBG与三角形MFG全等,利用全等三角形的对应边相等得到CG=MG,由P为CM的中点,利用三线合一得到PG与CP垂直,同时利用等式的性质得到∠CGM=60°,由CG=MG,得到三角形MCG为等边三角形,可得出∠PCG=60°,在直角三角形PCG中,利用锐角三角函数定义及特殊角的三角函数值即可求出PG与PC的比值为
3

(3)将菱形BEFG绕点B顺时针旋转任意角度,原问题中的其他条件不变,取特殊情况考虑:如图1,由∠ABC=∠BEF=2α,根据两直线平行同旁内角互补表示出∠DCB,再由(1)得出CP为∠DCB角平分线,表示出∠PCG,在直角三角形PCG中,利用锐角三角函数定义可得tan∠PCG=
PG
PC
=tan(90°-α).
解答:解:(1)PG⊥PC,且
PG
PC
=
3
,理由为:
证明:延长PG,与DC交于点H,如图1所示,
∵四边形ABCD是菱形,四边形EFBG是菱形,
∴DC∥AE,BE∥GF,
∴DC∥GF,
∴∠HDP=∠GFP,∠DHP=∠FGP,
又P为DF的中点,
∴DP=FP,
在△DHP和△FGP中,
∠HDP=∠GFP
∠DHP=∠FGP
DP=FP

∴△DHP≌△FGP(AAS),
∴DH=GF,HP=GP,
又∵CD=CB,GF=GB,
∴DC-DH=CB-GF=CB-GB,即CH=CG,
∴△CHG为等腰三角形,
∴CP⊥PG,CP为∠DCB的平分线,
又∵∠ABC=60°,
∴∠DCB=120°,
∴∠PCG=60°,
在Rt△PCG中,tan∠PCG=
PG
PC
=tan60°=
3


(2)在(1)中得到的两个结论不发生变化,即PG⊥PC,且
PG
PC
=
3
,理由为:
证明:延长CP,与AB交于M点,连接CG,MG,
∵四边形ABCD是菱形,四边形EFBG是菱形,
∴DC∥AB,BG=FG,DC=BC,
∴∠CDP=∠DFA,∠DCP=∠FMP,
又∵P为DF的中点,
∴DP=FP,
在△DCP和△FMP中,
∠CDP=∠MFP
∠DCP=∠FMP
DP=FP

∴△DCP≌△FMP(AAS),
∴DC=MF,CP=MP,
∴MF=BC,
∵菱形BEFG中,BF平分∠GBE,
∴∠ABC=∠EBF=∠GBF=60°,
∴∠CBG=∠MFG=60°,
在△CBG和△MFG中,
CB=MG
∠CBG=∠MFG=60°
BG=FG

∴△CBG≌△MFG(SAS),
∴CG=MG,∠CGB=∠MGF,
∴CP⊥PG,
∵∠CGB=∠CGM+∠GMB=∠MGF=∠FGB+∠BGM,
∴∠CGM=∠FGB=60°,
又∵CG=GM,
∴△CGM是等边三角形,
∴∠PCG=60°,
在Rt△PCG中,tan∠PCG=
PG
PC
=tan60°=
3


(3)
PG
PC
=tan(90°-α),理由为:
用特值法:如图1所示,假设∠ABC=∠BEF=2α,
可得∠PCG=
1
2
(180°-2α)=90°-α,
则tan∠PCG=
PG
PC
=tan(90°-α).
故答案为:垂直;
3
点评:此题考查了全等三角形的判定与性质,菱形的性质,等腰三角形的性质,锐角三角函数定义,平行线的性质,以及特殊角的三角函数值,是一道综合性较强的试题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

25、请阅读下列材料:
已知:如图1在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45度.探究线段BD、DE、EC三条线段之间的数量关系.
小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:
(1)猜想BD、DE、EC三条线段之间存在的数量关系式,并对你的猜想给予证明;
(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图2,其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:
问题:如图(2),一圆柱的高AB=5dm,底面半径为5dm,BC是底面直径,求一只蚂蚁从A点出发沿圆柱表面爬行到点C的最短路线.小明设计了两条路线:
路线1:沿侧面展开图中的线段AC.如下图(2)所示:
精英家教网
设路线1的长度为l1,则l12=AC2=AB2+BC2=52+(5π)2=25+25π2
路线2:高线AB+底面直径BC.如上图(1)所示:
设路线2的长度为l2,则l22=(AB+BC)2=(5+10)2=225
∵l12-l22=25+25π2-225=25π2-200=25(π2-8)>0
∴l12>l22,∴l1>l2
所以要选择路线2较短.
(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1dm,高AB仍为5dm”继续按前面的路线进行计算.请你帮小明完成下面的计算:
路线1:l12=AC2=AB2+BC2=
 

路线2:l22=(AB+BC)2=
 

∵l12
 
l22,∴l1
 
l2( 填>或<)
所以应选择路线
 
(填1或2)较短.
(2)请你帮小明继续研究:设圆柱的底面半径为r,高为h,当蚂蚁走上述两条路线的路程出现相等情况时,求出此时h与r的比值(本小题π的值取3).

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•贵阳模拟)请阅读下列材料:
问题:如图1,圆柱的底面半径为1dm,BC是底面直径,圆柱高AB为5dm,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:
路线1:高线AB+底面直径BC,如图1所示.路线2:侧面展开图中的线段AC,如图2所示.(结果保留π)

(1)设路线1的长度为L1,则L12=
49
49
.设路线2的长度为L2,则L22=
25+π2
25+π2
.所以选择路线
2
2
(填1或2)较短.
(2)小明把条件改成:“圆柱的底面半径为5dm,高AB为1dm”继续按前面的路线进行计算.此时,路线1:L12=
121
121
.路线2:L22=
1+25π2
1+25π2
.所以选择路线
1
1
(填1或2)较短.
(3)请你帮小明继续研究:当圆柱的底面半径为2dm,高为hdm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:问题:现有5分边长为1的正方形,排列形式如图1,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中画出拼接成的新正方形.
小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得x=
5
,由此可知新正方形的边长等于两个小正方形组成的矩形对角线长,于是,画出如图2所示的分割线,拼出如图3所示的新正方形.
请你参考小东的做法,解决以下问题.要求:在图4中画出分割线,并在图5的正方形网格图(图中每个小正方形的边长均为1)中画出拼接的新正方形.(说明:直接画出图形,不要求写分析过程)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:已知方程x2+x-3=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为y,则y=2x.
所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+
y
2
-3=0,化简,得y2+2y-12=0.
故所求方程为y2+2y-12=0.
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的3倍.

查看答案和解析>>

同步练习册答案