精英家教网 > 初中数学 > 题目详情

若x1,x2(x1<x2)是方程(x-a)(x-b)=1(a<b)的两个根,则实数x1,x2,a,b的大小关系为(    )

A.x1<x2<a<b   B.x1<a<x2<b   C.x1<a<b<x2    D.a<x1<b<x2

 

【答案】

C.

【解析】

试题分析:因为x1和x2为方程的两根,所以满足方程(x-a)(x-b)= 1,再由已知条件x1<x2、a<b结合图象,可得到x1,x2,a,b的大小关系.

解答:解:用作图法比较简单,首先作出(x-a)(x-b)=0图象,(开口向上的,与x轴有两个交点),

再向下平移1个单位,就是(x-m)(x-n)=1,这时与x轴的交点就是x1,x2,画在同一坐标系下,

很容易发现:x1<a<b<x2

故选C.

考点:抛物线与x轴的交点.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

有一个定理:若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c为系数且为常数)的两个根,则x1+x2=-
b
a
、x1•x2=
c
a
,这个定理叫做韦达定理.如:x1、x2是方程x2+2x-1=0的两个根,则x1+x2=-2、x1•x2=-1.
若x1、x2是方程x2+mx-2m=0的两个根.(其中m≠0)试求:
(1)x1+x2与x1•x2的值(用含有m的代数式表示).
(2)x12+x22的值(用含有m的代数式表示).[提示:x12+x22=(x1+x22-2x1x2]
(3)若
x1
x2
+
x2
x1
=1
,试求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面材料:
若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,那么由根与系数的关系得:x1+x2=-
b
a
,x1x2=
c
a
.∵
b
a
=-(x1+x2)
c
a
=x1x2
,∴ax2+bx+c=a(x2+
b
a
x+
c
a
)
=a[x2-(x1+x2)x+x1x2]=a(x-x1)(x-x2).于是,二次三项式就可以分解因式ax2+bx+c=a(x-x1)(x-x2).
(1)请用上面的方法将多项式4x2+8x-1分解因式.
(2)判断二次三项式2x2-4x+7在实数范围内是否能利用上面的方法因式分解,并说明理由.
(3)如果关于x的二次三项式mx2-2(m+1)x+(m+1)(1-m)能用上面的方法分解因式,试求出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

有一个定理:若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c为系数且为常数)的两个实数根,则x1+x2=-
b
a
、x1•x2=
c
a
,这个定理叫做韦达定理. 如:x1、x2是方程x2+2x-1=0的两个实数根,则x1+x2=-2、x1•x2=-1. 若x1,x2是方程2x2+(m-1)x-
1
2
m=0
的两个实根.试求:
(1)x1+x2与x1•x2的值(用含有m的代数式表示);
(2)
x
2
1
+
x
2
2
的值(用含有m的代数式表示);
(3)若(x1-x2)2=1,试求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c 为系数且为常数)的两个根,则x1+x2=-
b
a
、x1•x2=
c
a
,这个定理叫做韦达定理.如:x1、x2是方程x2+2x-1=0的两个根,则x1+x2=-2、x1•x2=-1.
若x1、x2是一元两次方程2x2+mx-2m+1=0的两个实数根.试求:
(1)x1+x2与x1•x2的值(用含有m的代数式表示).
(2)若x12+x22=4,试求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

有一个定理:若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c为系数且为常数)的两个根,则x1+x2=数学公式、x1•x2=数学公式,这个定理叫做韦达定理.如:x1、x2是方程x2+2x-1=0的两个根,则x1+x2=-2、x1•x2=-1.
若x1、x2是方程x2+mx-2m=0的两个根.(其中m≠0)试求:
(1)x1+x2与x1•x2的值(用含有m的代数式表示).
(2)x12+x22的值(用含有m的代数式表示).[提示:x12+x22=(x1+x22-2x1x2]
(3)若数学公式,试求m的值.

查看答案和解析>>

同步练习册答案