精英家教网 > 初中数学 > 题目详情

在下面图3的各图中,a∥b,分别计算∠1的度数分别是                    

            

图3

90°,154°,60°;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

17、实际问题:某学校共有18个教学班,每班的学生数都是40人.为了解学生课余时间上网情况,学校打算做一次抽样调查,如果要确保全校抽取出来的学生中至少有10人在同一班级,那么全校最少需抽取多少名学生?
建立模型:为解决上面的“实际问题”,我们先建立并研究下面从口袋中摸球的数学模型:
在不透明的口袋中装有红,黄,白三种颜色的小球各20个(除颜色外完全相同),现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出多少个小球?
为了找到解决问题的办法,我们可把上述问题简单化:
(1)我们首先考虑最简单的情况:即要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?
假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需摸出小球的个数是:1+3=4(如图①);
(2)若要确保从口袋中摸出的小球至少有3个是同色的呢?
我们只需在(1)的基础上,再从袋中摸出3个小球,就可确保至少有3个小球同色,即最少需摸出小球的个数是:1+3×2=7(如图②)
(3)若要确保从口袋中摸出的小球至少有4个是同色的呢?
我们只需在(2)的基础上,再从袋中摸出3个小球,就可确保至少有4个小球同色,即最少需摸出小球的个数是:1+3×3=10(如图③):…
(10)若要确保从口袋中摸出的小球至少有10个是同色的呢?
我们只需在(9)的基础上,再从袋中摸出3个小球,就可确保至少有10个小球同色,即最少需摸出小球的个数是:1+3×(10-1)=28(如图⑩)

模型拓展一:在不透明的口袋中装有红,黄,白,蓝,绿五种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:
(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是
6

(2)若要确保摸出的小球至少有10个同色,则最少需摸出小球的个数是
46

(3)若要确保摸出的小球至少有n个同色(n<20),则最少需摸出小球的个数是
1+5(n-1)

模型拓展二:在不透明口袋中装有m种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:
(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是
1+m

(2)若要确保摸出的小球至少有n个同色(n<20),则最少需摸出小球的个数是
1+m(n-1)

问题解决:(1)请把本题中的“实际问题”转化为一个从口袋中摸球的数学模型;
(2)根据(1)中建立的数学模型,求出全校最少需抽取多少名学生?

查看答案和解析>>

科目:初中数学 来源: 题型:

27、读一读,想一想,做一做
现有足够的2×2,3×3的正方形和2×3的矩形图片A、B、C(如图),现从中各选取若干个图片拼成不同的图形.请你在下面给出的方格纸中,按下列要求分别画出一种示意图(说明:下面给出的方格纸中,每个小正方形的边长均为1.拼出的图形,要求每两个图片之间既无缝隙,也不重叠.画图必须保留拼图的痕迹)
①选取A型、B型两种图片各1块,C型图片2块,在下面的图中拼成一个正方形;
②选取A型4块,B型图片1块,C型图片4块,在下面的图中拼成一个正方形;
③选取A型3块,B型图片1块,再选取若干块C型图片,在下面的图中拼成一个矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

27、阅读下面的材料并解答问题.
图形是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系.例如完全平方公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2等图形的面积表示:

(1)请写出图3所表示的代数恒等式:
(a+2b)(2a+b)=2a2+5ab+2b2

解决问题:
某钢铁加工厂现有足够的2×2,3×3的正方形和2×3的矩形下脚料A、B、C(如图所示),现从中各选取若干个下脚料焊接成不同的图形,请你在下面给出的方格纸中,按下列要求分别画出一种示意图(说明:下面给出的方格纸中,每个小正方形的边长均为1,拼出的图形,要求每两个图片之间既无缝隙,也无重叠,画图必须保留拼较的痕迹)
A、B、C、
(2)选取A型4块,B型两种图片1块,C型图片4块,在下面的图2中拼成一个正方形;
利用面积法去解,如图所示.

(3)选取A型3块,B型两种图片1块,C型图片若干块,在下面的图3中拼成一个长方形.

查看答案和解析>>

科目:初中数学 来源:第28章《概率初步》中考题集(30):28.2 等可能情况下的概率计算(解析版) 题型:解答题

实际问题:某学校共有18个教学班,每班的学生数都是40人.为了解学生课余时间上网情况,学校打算做一次抽样调查,如果要确保全校抽取出来的学生中至少有10人在同一班级,那么全校最少需抽取多少名学生?
建立模型:为解决上面的“实际问题”,我们先建立并研究下面从口袋中摸球的数学模型:
在不透明的口袋中装有红,黄,白三种颜色的小球各20个(除颜色外完全相同),现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出多少个小球?
为了找到解决问题的办法,我们可把上述问题简单化:
(1)我们首先考虑最简单的情况:即要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?
假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需摸出小球的个数是:1+3=4(如图①);
(2)若要确保从口袋中摸出的小球至少有3个是同色的呢?
我们只需在(1)的基础上,再从袋中摸出3个小球,就可确保至少有3个小球同色,即最少需摸出小球的个数是:1+3×2=7(如图②)
(3)若要确保从口袋中摸出的小球至少有4个是同色的呢?
我们只需在(2)的基础上,再从袋中摸出3个小球,就可确保至少有4个小球同色,即最少需摸出小球的个数是:1+3×3=10(如图③):…
(10)若要确保从口袋中摸出的小球至少有10个是同色的呢?
我们只需在(9)的基础上,再从袋中摸出3个小球,就可确保至少有10个小球同色,即最少需摸出小球的个数是:1+3×(10-1)=28(如图⑩)

模型拓展一:在不透明的口袋中装有红,黄,白,蓝,绿五种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:
(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是______;
(2)若要确保摸出的小球至少有10个同色,则最少需摸出小球的个数是______;
(3)若要确保摸出的小球至少有n个同色(n<20),则最少需摸出小球的个数是______.
模型拓展二:在不透明口袋中装有m种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:
(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是______.
(2)若要确保摸出的小球至少有n个同色(n<20),则最少需摸出小球的个数是______.
问题解决:(1)请把本题中的“实际问题”转化为一个从口袋中摸球的数学模型;
(2)根据(1)中建立的数学模型,求出全校最少需抽取多少名学生?

查看答案和解析>>

同步练习册答案