精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知矩形OABC,点O为坐标原点,点Ay轴正半轴上,点Cx轴正半轴上,OA4OC6,点EOC的中点,将△OAE沿AE翻折,使点O落在点O处,作直线CO',则直线CO'的解析式为(  )

A.y=﹣x+6B.y=﹣x+8C.y=﹣x+10D.y=﹣x+8

【答案】D

【解析】

连接OO'AE与点M,过点O'O'HOC于点H,由轴对称的性质可知AE垂直平分OO',先用面积法求出OM的长,进一步得出OO'的长,再证△AOE∽△OHO',分别求出OHO'H的长,得出点O'的坐标,再结合点C坐标即可用待定系数法求出直线CO'的解析式.

解:连接OO'AE与点M,过点O'O'HOC于点H

∴点EOC中点,

OEECOC3

RtAOE中,OE3AO4

AE5

∵将△OAE沿AE翻折,使点O落在点O′处,

AE垂直平分OO'

OMO'M

RtAOE中,

SAOEAOOEAEOM

×3×4×5×OM

OM

OO'

∵∠O'OH+AOM90°,∠MAO+AOM90°,

∴∠MAO=∠O'OH

又∵∠AOE=∠OHO'90°,

∴△AOE∽△OHO'

OHO'H

O'的坐标为(),

将点O'),C60)代入ykx+b

得,

解得,k=﹣b8

∴直线CO'的解析式为y=﹣x+8

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD内有两点EF满足AE=FC= 4EF =6AEEFCFEF,则正方形ABCD的面积为 ( )

A.24B.25C.48D.50

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,则的值为(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是⊙O的内接四边形,,AC为直径,DEBC,垂足为E.

(1)求证:CD平分∠ACE;

(2)若AC=9,CE=3,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向海里的C处,为了防止某国还巡警干扰,就请求我A处的鱼监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求AC之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,解决问题:

学习了勾股定理后我们知道:直角三角形两条直角边的平方和等于斜边的平方.根据勾股定理我们定义:如图①,点MN是线段AB上两点,如果线段AMMNNB能构成直角三角形,则称点MN是线段AB的勾股点

解决问题

1)在图①中,如果AM2MN3,则NB   

2)如图②,已知点C是线段AB上一定点(ACBC),在线段AB上求作一点D,使得CD是线段AB的勾股点.李玉同学是这样做的:过点C作直线GHAB,在GH上截取CEAC,连接BE,作BE的垂直平分线交AB于点D,则CD是线段AB的勾股点你认为李玉同学的做法对吗?请说明理由

3)如图③,DE是△ABC的中位线,MNAB边的勾股点(AMMNNB),连接CMCN分别交DE于点GH求证:GH是线段DE的勾股点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不透明布袋内装有形状、大小、质地完全相同的4个小球,分别标有数字1,2,3,4.

(1)从布袋中随机地取出一个小球,求小球上所标的数字不为2的概率;

(2)从布袋中随机地取出一个小球,记录小球上所标的数字为x,不将取出的小球放回布袋,再随机地取出一个小球,记录小球上所标的数字为y,这样就确定点E的一个坐标为(x,y),求点E落在直线y=x+1上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某专卖店经市场调查得知,一种商品的月销售量 Q(单位:吨)与销售价格 x(单位:万元/)的关系可用下图中的折线表示.

(1)写出月销售量 Q 关于销售价格 x 的关系;

(2)如果该商品的进价为 5 万元/吨,除去进货成本外,专卖店销售该商品每月的固定成本为 10 万元,问该商品 每吨定价多少万元时,销售该商品的月利润最大?并求月利润的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.

求证:OAB是等腰三角形.

查看答案和解析>>

同步练习册答案