精英家教网 > 初中数学 > 题目详情

提出问题

如图,在△ABC中,∠A=90°,分别以边ABAC向外作正方形ABDE 和正方形 ACFG,连接EG,小亮发现△ABC与△AEG面积相等.小亮思考:这个问题中,如果∠A≠90°,那么△ABC与△AEG面积是否仍然相等?

猜想结论

经过研究,小亮认为:上述问题中,对于任意△ABC,分别以边ABAC向外作正方形ABDE 和正方形 ACFG,连接EG,那么△ABC与△AEG面积相等.

证明猜想

(1)请你帮助小亮画出图形,并完成证明过程.已知:以△ABC的两边ABAC为边长分别向外作正方形ABDEACFG,连接GE.求证:SAEG=SABC

结论应用

(2)学校教学楼前的一个六边形花圃被分成七个部分,分别种上不同品种的花卉,其中四边形ABCDCIHGGFED均为正方形,且面积分别为9m2、5m2和4m2.求这个六边形花圃ABIHFE的面积.

 


(1)证明:①如图(1),当∠BAC=90°时,

EAG≌△BAC(SAS),∴S△AEG=S△ABC.   ………………2分      

②如图(2),当∠BAC<90°时,过CCMAB,垂足为M

GGNAE,与AE的延长线交于点N

∵∠GAN +∠NAC =∠GAC =90°,∠MAC +∠NAC =∠MAN = 90°,

∴∠GAN =∠MAC,又AC =AG,∠AMC =∠ANG =90°.

∴△AMC≌△ANG,∴GN = CM.

又S△AEGAE·GN,S△ABCAB·CM,    

∴S△AEG = S△ABC.           ………………5分

③如图(3),当∠BAC>90°时,

如图中辅助线,仿照⑵,同理可证.         

综合以上结论可知,命题成立.………………7分

(2)解:∵正方形ABCDCIHGGFED的面积分别为9m2、5m2和4m2

        ∴DC2=9m2CG2=5m2DG2=4m2

        ∵DC2CG2DG2,∴三角形DCG是直角三角形,∠DGC=90°.

        ∴SDCG·DG·CG´2´m.

        ∵四边形ABCDCIHGGFED均为正方形,

根据上面结论可得:△ADE、△FGH△、△CBI均与△DCG的面积相等,

        ∴六边形ABIHFE的面积为9+5+4+4´=(18+4) m2. ……………10

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平行线CF于点F,求证:AE=EF.

经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、问题背景:某课外学习小组在一次学习研讨中,得到了如下命题:
如图①,在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若CM=DN,则∠BON=108°.
该小组提出了一个大胆的猜想:如图②,在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若DM=EN,则∠BON=108°.
请问他们的猜想是否正确?若正确,请写出解答过程;若不正确,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠A=36°,AB=AC,BD是∠ABC的平分线,设CD=a,BD=b,AB=c.
(1)猜想a,b,c之间的数量关系,并说明理由;
(2)请你根据问题(1)提出一个问题,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年河北省毕业生结课小模拟考试数学试卷(解析版) 题型:解答题

提出问题

如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.

类比探究

如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.

拓展延伸

如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.

 

查看答案和解析>>

同步练习册答案