【题目】(1)如图,已知矩形中,点是边上的一动点(不与点、重合),过点作于点,于点,于点,猜想线段三者之间具有怎样的数量关系,并证明你的猜想;
(2)如图,若点在矩形的边的延长线上,过点作于点,交的延长线于点,于点,则线段三者之间具有怎样的数量关系,直接写出你的结论;
(3)如图,是正方形的对角线,在上,且,连接,点是上任一点,与点,于点,猜想线段之间具有怎样的数量关系,直接写出你的猜想.
【答案】(1),见解析;(2)或者,见解析;(3).
【解析】
(1)过点作于,先得出四边形是矩形,再证明四边形是矩形,证明,求出即可;
(2)过C点作CO垂直EF,可得矩形HCOF,因为HC=FO,只要证明EO=EG,最后根据AAS证明.
(3)连接AC交BD于O,过点E作EH⊥AC,证明矩形FOHE,证明EG=CH,根据AAS证明.
(1)答:
证明:如图1,过点作于.
,
四边形是矩形.
.
.
四边形是矩形,
,且互相平分
∴∠DBC=∠ACB
,
,
又,
.
∴EG=CN
;
即;
(2)或者;
过C点作CO垂直EF,
∵,CO⊥EF,
∴矩形COHF
∴CE∥BD,CH=DO
∴∠DBC=∠OCE
∵矩形ABCD
∴∠DBC=∠ACB
∵∠ECG=∠ACB
∴∠ECG=∠OCE
∵CO⊥EF,
∴∠G=∠COE
∵CE=CE
∴
∴EO=EG
∴或者;
(3).
连接AC交BD于O,过点E作EH⊥AC,
∵正方形ABCD
∴FO⊥AC,
∵EH⊥AC
∴矩形FEOH,∠EHC=90°
∵EG⊥BC,EF=OH
∴∠EGC=90°=∠EHC
∴EH∥BD
∴∠HEC=∠FLE
∵BL=BC
∴∠GCE=∠FLE
∴∠GCE=∠HEC
∵EC=EC
∴
∴HC=GE
∴
科目:初中数学 来源: 题型:
【题目】如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.
(1)如图2,当PD∥AB时,求PD的长;
(2)如图3,当时,延长AB至点E,使BE=AB,连接DE.
①求证:DE是⊙O的切线;
②求PC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两个工程队分别同时开挖两条600米长的管道,所挖管道长度(米)与挖掘时间(天)之间的关系如图所示,则下列说法中:
①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前1天完成任务;④当时,甲乙两队所挖管道长度相同,不正确的个数有( )
A. 4个B. 3个C. 2个D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地重视生态建设,大力发展旅游业,各地旅游团纷沓而至,某旅游团上午6时从旅游馆出发,乘汽车到距离的旅游景点观光,该汽车离旅游馆的距离与时间的关系可以用如图的折线表示.根据图象提供的有关信息,解答下列问题:
(1)求该团旅游景点时的平均速度是多少?
(2)该团在旅游景点观光了多少小时?
(3)求该团返回到宾馆的时刻是几时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.
(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;
(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OA是⊙M的直径,点B在x轴上,连接AB交⊙M于点C.
(1)若点A的坐标为(0,2),∠ABO=30°,求点B的坐标.
(2)若D为OB的中点,求证:直线CD是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将8个同样大小的小正方体搭成如图所示的几何体,请按照要求解答下列问题:
(1)从正面、左面、上面观察如图所示的几何体,分别画出所看到的几何体的形状图;
(2)如果在这个几何体上再摆放一个相同的小正方体,并保持这个几何体从上面看和从左面看到的形状图不变.
①添加小正方体的方法共有_________种;
②请画出两种添加小正方体后,从正面看到的几何体的形状图.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com