精英家教网 > 初中数学 > 题目详情

如图,反比例函数的图象与一次函数y=kx+b的图象相交于两点A(m,3)和B(﹣3,n).

(1)求一次函数的表达式;
(2)观察图象,直接写出使反比例函数值大于一次函数值的自变量x的取值范围.

(1)y=x+1;(2)x<-3或0<x<2.

解析试题分析:(1)将A与B坐标分别代入反比例解析式求出m与n的值,确定出A与B坐标,再将两点代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;
(2)由A与B的横坐标,利用函数图象即可求出满足题意x的范围.
试题解析:(1)将A(m,3),B(-3,n)分别代入反比例解析式得:3=,n=
解得:m=2,n=-2,
∴A(2,3),B(-3,-2),
将点A的坐标与点B的坐标代入一次函数解析式得:
,解得:k=1,b=1,
则一次函数解析式为y=x+1;
(2)∵A(2,3),B(-3,-2),
∴由函数图象得:反比例函数值大于一次函数值的自变量x的取值范围为x<-3或0<x<2.
考点: 反比例函数与一次函数的交点问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:计算题

如图,是反比例函数的图象的一支.根据给出的图象回答下列问题:

(1)该函数的图象位于哪几个象限?请确定m的取值范围;
(2)在这个函数图象的某一支上取点A(x1,y1)、B(x2,y2).如果y1<y2,那么x1与x2有怎样的大小关系?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x (小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:

(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?
(2)求k的值;
(3)当x=16时,大棚内的温度约为多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在Rt△ABC中,∠ABO=90°,OB=4,AB=8,且反比例函数在第一象限内的图象分别交OA、AB于点C和点D,连结OD,若

(1)求反比例函数解析式;
(2)求C点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知图中的曲线是函数 (m为常数)图象的一支.

(1)求常数m的取值范围;
(2)若该函数的图象与正比例函数图象在第一象限的交点为A(2,n),求点A的坐标及反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知y-2与x成反比例,当x=3时,y=3,求y与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知双曲线上一点M(1,m)和双曲线上一点N(n,3).
(1)求m、n的值;
(2)求△OMN的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,OA=OB,函数的图象与线段AB交于M点,且AM=BM.

(1)求点M的坐标;
(2)求直线AB的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系中,点A(﹣3,4)关于y轴的对称点为点B,连接AB,反比例函数(x>0)的图象经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图象上任意一点,过点P作PD⊥x轴于点D,点Q是线段AB上任意一点,连接OQ、CQ.
(1)求k的值;
(2)判断△QOC与△POD的面积是否相等,并说明理由.

查看答案和解析>>

同步练习册答案