精英家教网 > 初中数学 > 题目详情
已知:抛物线y=x2+(a-2)x-2a(a为常数,且a>0)。
(1)求证:抛物线与x轴有两个交点;
(2)设抛物线与x轴的两个交点分别为A、B(A在B左侧),与y轴的交点为C,
①当AC=2时,求抛物线的解析式;
②将①中的抛物线沿x轴正方向平移t个单位(t>0),同时将直线l:y=3x沿y轴正方向平移t个单位,平移后的直线为l′,移动后A、B的对应点分别为A′、B′,当t为何值时,在直线l′上存在点P,使得△A′B′P为以A′B′为直角边的等腰直角三角形?
解:(1)令y=0,则x2+(a-2)x-2a =0,
△=(a-2)2+8a=(a+2)2
∵a>0,
∴a+2>0,
∴△>0,
∴方程x2+(a-2)x-2a=0,有两个不相等的实数根,
∴抛物线与x轴有两个交点;
(2)解:①令y=0,则x2+(a-2)x-2a=0,
解方程,得x1=2,x2=-a,
∵A在B左侧,且a>0,
∴抛物线与x轴的两个交点为A(-a,0),B(2,0),
∵抛物线与y轴的交点为C,
∴C(0,-2a),
∴AO=a,CO=2a,
在Rt△AOC中,AO2+ CO2=(22
a2+(2a)2=20,
可得a=±2,
∵a>0,
∴a=2,
∴抛物线的解析式为y=x2-4,
②依题意,可得直线l′的解析式为y=3x+t,
A′(t-2,0),B′(t+2,0),A′B′=AB=4,
∵△A′B′P为以A′B′为直角边的等腰直角三角形,
∴当∠PA′B′=90°时,点P的坐标为(t-2,4)或(t-2,-4)

解得t=5/2或t=1/2,
当∠PB′A′=90°时,点P的坐标为(t+2,4)或(t+2,-4)

解得t=-5/2或t=-1/2(不合题意,舍去),
综上所述,t=5/2或t=1/2。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、已知:抛物线y=x2+px+q向左平移2个单位,再向下平移3个单位,得到抛物线y=x2-2x-1,则原抛物线的顶点坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线的顶点.
(1)用配方法求顶点C的坐标(用含m的代数式表示);
(2)“若AB的长为2
2
,求抛物线的解析式.”解法的部分步骤如下,补全解题过程,并简述步骤①的解题依据,步骤②的解题方法;
解:由(1)知,对称轴与x轴交于点D(
 
,0)
∵抛物线的对称性及AB=2
2

∴AD=DB=|xA-xD|=2
2

∵点A(xA,0)在抛物线y=(x-h)2+k上,
∴0=(xA-h)2+k①
∵h=xC=xD,将|xA-xD|=
2
代入上式,得到关于m的方程0=(
2
)2+(      )

(3)将(2)中的条件“AB的长为2
2
”改为“△ABC为等边三角形”,用类似的方法求出此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:抛物线y=x2+bx+c的图象经过(1,6)、(-1,2)两点.
求:这个抛物线的解析式、对称轴及顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:抛物线y=-x2-2(m-1)x+m+1与x轴交于a(-1,0),b(3,0),则m为
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•集美区模拟)已知:抛物线y=x2+(m-1)x+m-2与x轴相交于A(x1,0),B(x2,0)两点,且x1<1<x2
(1)求m的取值范围;
(2)记抛物线与y轴的交点为C,P(x3,m)是线段BC上的点,过点P的直线与抛物线交于点Q(x4,y4),若四边形POCQ是平行四边形,求抛物线所对应的函数关系式.

查看答案和解析>>

同步练习册答案