【题目】小明从家步行到校车站台,等候坐校车去学校,图中的折线表示这一过程中小明的路程S(km)与所花时间t(min)间的函数关系;下列说法:①他步行了1km到校车站台;②他步行的速度是100m/min;③他在校车站台等了6min;④校车运行的速度是200m/min;其中正确的个数是( )个.
A. 1B. 2C. 3D. 4
【答案】C
【解析】
根据题意和图形可知小明先步行然后等车然后坐车,可知小明步行时间为10分钟,等车时间为(16-10)分钟,坐车时间为(30-16)分钟,然后根据v=的关系式,即可计算出步行的速度和校车的速度,然后逐一分析判断即可.
有图象可得小明步行10分钟,步行了1km到达校车站台,
所以步行的速度为:1000÷10=100(m/min),
有图象可得:小明在校车站台等了16-10=6(min),
利用图象可得:公交车行驶的距离为:8-1=7(km),
公交车行驶的时间为:30-16=14(min),
所以校车的速度是:7000÷14=500(m/min).
故①②③正确,④错误;
故本题答案为:C.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:
如果矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形.例如,下图中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是点A,B,C的覆盖矩形,其中矩形AB3C3D3是点A,B,C的最优覆盖矩形.
(1)已知A(﹣2,3),B(5,0),C(t,﹣2).
①当t=2时,点A,B,C的最优覆盖矩形的面积为 ;
②若点A,B,C的最优覆盖矩形的面积为40,求直线AC的表达式;
(2)已知点D(1,1).E(m,n)是函数y=(x>0)的图象上一点,⊙P是点O,D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,关于x的方程a(1﹣x2)+2bx+c(1+x2)=0有两个相等实根,且3c=a+3b
(1)试判断△ABC的形状;
(2)求sinA+sinB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,若AF=4,AB=7.
(1)求DE的长度;
(2)试猜想:直线BE与DF有何位置关系?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2;将△ABC绕点顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,求n的大小和图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知平行四边形中, ,垂足为与的延长线相交于,且,连接;
(1)如图,求证:四边形是菱形;
(2)如图,连接,若,在不添加任何辅助线的情况下,直接写出图中所有面积等于的面积的钝角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,AE与BF相交于点O,连接EF
(1)求证:四边形ABEF是菱形;
(2)若AE=6,BF=8,CE=,求□ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=7.5,AC=9,S△ABC=.动点P从A点出发,沿AB方向以每秒5个单位长度的速度向B点匀速运动,动点Q从C点同时出发,以相同的速度沿CA方向向A点匀速运动,当点P运动到B点时,P、Q两点同时停止运动,以PQ为边作正△PQM(P、Q、M按逆时针排序),以QC为边在AC上方作正△QCN,设点P运动时间为t秒.
(1)求cosA的值;
(2)当△PQM与△QCN的面积满足S△PQM=S△QCN时,求t的值;
(3)当t为何值时,△PQM的某个顶点(Q点除外)落在△QCN的边上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,,,点E是边BC的中点动点P从点A出发,沿着AB运动到点B停止,速度为每秒钟1个单位长度,连接PE,过点E作PE的垂线交射线AD与点Q,连接PQ,设点P的运动时间为t秒.
当时,______;
是否存在这样的t值,使为等腰直角三角形?若存在,求出相应的t值,若不存在,请说明理由;
当t为何值时,的面积等于10?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com