精英家教网 > 初中数学 > 题目详情

如图,一次函数y=kx+1(k≠0)与反比例函数(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.

(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积?

解:(1)将A(1,2)代入一次函数解析式得:k+1=2,即k=1,∴一次函数解析式为y=x+1。
将A(1,2)代入反比例解析式得:m=2,
∴反比例解析式为
(2)设一次函数与x轴交于D点,过点A作AE垂直于x轴于点E,

在y=x+1中,令y=0,求出x=﹣1,即OD=1。
∴A(1,2)。∴AE=2,OE=1。
∵N(3,0),∴到B横坐标为3。
将x=3代入一次函数得:y=4,
将x=3代入反比例解析式得:
∴B(3,4),即ON=3,BN=4,C(3,),即CN=

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,直线y=-x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B'处.

求: (1)点B'的坐标:             .(2分)
(2)直线AM所对应的函数关系式.(8分)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知y+3与x+2成正比例,且当x=3时,y=7.
(1)写出y与x之间的函数关系式;
(2)当x=-1时,求y的值;
(3)当y=0时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某物体从P点运动到Q点所用时间为7秒,其运动速度v(米每秒)关于时间t(秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB的面积.由物理学知识还可知:该物体前t(3<t≤7)秒运动的路程在数值上等于矩形AODB的面积与梯形BDNM的面积之和.

根据以上信息,完成下列问题:
(1)当3<t≤7时,用含t的式子表示v;
(2)分别求该物体在0≤t≤3和3<t≤7时,运动的路程s(米)关于时间t(秒)的函数关系式;
(3)求该物体从P点运动到Q总路程的时所用的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:

 


进价(元/部)
4000
2500
售价(元/部)
4300
3000
该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元.
(毛利润=(售价﹣进价)×销售量)
(1)该商场计划购进甲、乙两种手机各多少部?
(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某服装店以每件40元的价格购进一批衬衫,在试销过程中发现:每月销售量y(件)与销售单价x(x为正整数)(元)之间符合一次函数关系,当销售单价为55元时,月销售量为140件;当销售单价
为70元时,月销售量为80件.
(1)求y与x的函数关系式;
(2)如果每销售一件衬衫需支出各种费用1元,设服装店每月销售该种衬衫获利为w元,求w与x之间的函数关系式,并求出销售单价定为多少元时,商场获利最大,最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,反比例函数与一次函数y=x+b的图象,都经过点A(1,2)

(1)试确定反比例函数和一次函数的解析式;
(2)求一次函数图象与两坐标轴的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

甲乙两车分别从A、B两地相向而行,甲车出发1小时后乙车出发,并以各自速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的距离S(千米)与甲车出发时间t(小时)之间的函数图象,其中D点表示甲车到达B地,停止行驶.

(1 )A、B两地的距离   千米;乙车速度是   ;a表示   
(2)乙出发多长时间后两车相距330千米?

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

抛物线y=﹣2x2经过平移到y=﹣2x2﹣4x﹣5,平移方法是(  )

A.向左平移1个单位,再向上平移3各单位
B.向左平移1个单位,再向下平移3个单位
C.向右平移1个单位,再向上平移3个单位
D.向右平移1个单位,再向下平移3个单位

查看答案和解析>>

同步练习册答案