分析 (1)由切线性质知∠ABF=90°,根据∠BCD=∠BAD知cos∠BCD=cos∠BAF=$\frac{AB}{AF}$=$\frac{3}{4}$,可得AB=$\frac{3}{4}$AF=$\frac{15}{4}$,从而得出答案;
(2)连结BD,解直角三角形分别得到AD=ABcos∠BAD=$\frac{45}{16}$、BF=$\frac{5\sqrt{7}}{4}$、sin∠BAF=$\frac{BF}{AF}$=$\frac{\sqrt{7}}{4}$,由ED=ADsin∠EAD可得答案.
解答 解:(1)∵BF为⊙O的切线,
∴∠ABF=90°,
∵∠BCD=∠BAD,
∴在Rt△ABF中,cos∠BCD=cos∠BAF=$\frac{AB}{AF}$=$\frac{3}{4}$,
∴AB=$\frac{3}{4}$AF=$\frac{3}{4}$×5=$\frac{15}{4}$,
∴AO=$\frac{1}{2}$AB=$\frac{15}{8}$;
(2)连结BD,
在Rt△ABD中,AD=ABcos∠BAD=$\frac{15}{4}$×$\frac{3}{4}$=$\frac{45}{16}$,
在Rt△ABF中,BF=$\sqrt{A{F}^{2}-A{B}^{2}}$=$\frac{5\sqrt{7}}{4}$,sin∠BAF=$\frac{BF}{AF}$=$\frac{\frac{5\sqrt{7}}{4}}{5}$=$\frac{\sqrt{7}}{4}$,
∴ED=ADsin∠EAD=$\frac{45}{16}$×$\frac{\sqrt{7}}{4}$=$\frac{45}{64}$$\sqrt{7}$,CD=2ED=$\frac{45}{32}$$\sqrt{7}$.
点评 本题主要考查切线的性质、勾股定理、垂径定理及解直角三角形,熟练掌握切线的性质和垂径定理及解直角三角形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | a>-$\frac{1}{5}$ | B. | -$\frac{1}{5}$<a<0 | C. | a<$\frac{1}{5}$ | D. | 0<a<$\frac{1}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | a=5,b=1 | B. | a=-5,b=1 | C. | a=5,b=-1 | D. | a=-5,b=-1 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 7.5 | B. | 8 | C. | 8.5 | D. | 9 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
众数 | 中位数 | 平均数 | 方差 |
8.5 | 8.3 | 8.1 | 0.15 |
A. | 平均数 | B. | 中位数 | C. | 众数 | D. | 方差 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com