精英家教网 > 初中数学 > 题目详情

【题目】如图,在钝角△ABC中,点D是BC的中点,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,M、N分别为AB、AC的中点,连接DM、DN、DE、DF、EM、EF、FN.求证:

(1)△EMD≌△DNF;

(2)△EMD∽△EAF;

(3)DE⊥DF.

【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析

【解析】

试题分析:(1)首先根据D是BC中点,N是AC中点N,可得DN是△ABC的中位线,判断出DN=AC;然后判断出EM=AB,再通过证明四边形AMDN是平行四边形,可得∠AMD=∠AND,进而可证明∠EMD=∠DNF,由全等三角形的判定方法即可证明△EMD≌△DNF;

(2)首先计算出EM:EA的值,DM和AF的数量关系以及证明∠EMD=∠EAF,再根据相似三角形判定的方法,判断出△EMD∽△∠EAF;

(3)由(2)可知△EMD∽△EAF,即可判断出∠MED=∠AEF,然后根据∠MED+∠AED=45°,判断出∠DEF=45°,再根据DE=DF,判断出∠DFE=45°,∠EDF=90°,即可判断出DE⊥DF.

试题解析:(1)∵D是BC中点,M是AB中点,N是AC中点,∴DM、DN都是△ABC的中位线,∴DM∥AC,且DM=AC;DN∥AB,且DN=AB;

∵△ABE是等腰直角三角形,M是AB的中点,∴EM平分∠AEB,EM=AB,∴EM=DN,同理:DM=FN,∵DM∥AC,DN∥AB,∴四边形AMDN是平行四边形,∴∠AMD=∠AND,又∵∠EMA=∠FNA=90°,∴∠EMD=∠DNF,在△EMD和△DNF中,EM=DN,EMD=DNF,MD=NF,∴△EMD≌△DNF;

(2)∵三角形ABE是等腰直角三角形,M是AB的中点,∴EM平分∠AEB,EM⊥AB,∴EM=MA,∠EMA=90°,∠AEM=∠EAM=45°,∴=sin45°=,∵D是BC中点,M是AB中点,∴DM是△ABC的中位线,∴DM∥AC,且DM=AC;

∵△ACF是等腰直角三角形,N是AC的中点,∴FN=AC,∠FNA=90°,∠FAN=∠AFN=45°,又∵DM=AC,∴DM=FN=FA,∵∠EMD=∠EMA+∠AMD=90°+∠AMD,∠EAF=360°﹣∠EAM﹣∠FAN﹣∠BAC=360°﹣45°﹣45°﹣(180°﹣∠AMD)=90°+∠AMD,∴∠EMD=∠EAF,在△EMD和△∠EAF中,EMD=EAF,∴△EMD∽△∠EAF;

(3)∵△EMD∽△∠EAF,∴∠MED=∠AEF,∵∠MED+∠AED=45°,∴∠AED+∠AEF=45°,即∠DEF=45°,又∵△EMD≌△DNF,∴DE=DF,∴∠DFE=45°,∴∠EDF=180°﹣45°﹣45°=90°,∴DE⊥DF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,△ABC的面积是28cm2 , AB=16cm,AC=12cm,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°.求:∠DCE和∠DCA的度数.
请将以下解答补充完整,
解:因为∠DAB+∠D=180°
所以DC∥AB(
所以∠DCE=∠B(
又因为∠B=95°,
所以∠DCE=°;
因为AC平分∠DAB,∠CAD=25°,根据角平分线定义,
所以∠CAB==°,
因为DC∥AB
所以∠DCA=∠CAB,(
所以∠DCA=°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列两个图形一定相似的是(

A.矩形B.有一个内角为100°的等腰三角形

C.直角三角形D.菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在ABCD中,E,F是对角线BD上的两点,则以下条件不能判断四边形AECF为平行四边形的是(
A.BE=DF
B.AF⊥BD,CE⊥BD
C.∠BAE=∠DCF
D.AF=CE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设平面内一点到等边三角形中心的距离为d,等边三角形的内切圆半径为r,外接圆半径为R .对于一个点与等边三角形,给出如下定义:满足rdR的点叫做等边三角形的中心关联点.在平面直角坐标系xOy中,等边△ABC的三个顶点的坐标分别为A(0,2),B(﹣,﹣1),C(,﹣1).

(1)已知点D(2,2),E,1),F,﹣1).在DEF中,是等边△ABC的中心关联点的是

(2)如图1,过点A作直线交x轴正半轴于M,使∠AMO=30°.

①若线段AM上存在等边△ABC的中心关联点Pmn),求m的取值范围;

②将直线AM向下平移得到直线y=kx+b,当b满足什么条件时,直线y=kx+b总存在等边△ABC的中心关联点;(直接写出答案,不需过程)

(3)如图2,点Q为直线y=﹣1上一动点,⊙Q的半径为.当Q从点(﹣4,﹣1)出发,以每秒1个单位的速度向右移动,运动时间为t秒.是否存在某一时刻t,使得⊙Q上所有点都是等边△ABC的中心关联点?如果存在,请直接写出所有符合题意的t的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线l1:y=﹣x+3与直线l2:y=x+1相交于点A.并且l1交x轴于点B,l2交x轴于点C.若平面上有一点D,构成平行四边形ABDC,请写出D点坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题是真命题的是(

A. 菱形的对角线互相平分 B. 一组对边平行的四边形是平行四边形

C. 对角线互相垂直且相等的四边形是正方形 D. 对角线相等的四边形是矩形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面内的三条直线有哪几种位置关系?请画图说明.

查看答案和解析>>

同步练习册答案