精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延长交AB于点M,MN⊥CM交射线AD于点N.

(1)当F为BE中点时,求证:AM=CE;

(2)若,求的值.

【答案】(1)证明见解析 (2)3

【解析】

(1)根据矩形的对边平行可得AB∥CD,再根据两直线平行,内错角相等求出∠BAC=∠FCO,然后利用“角角边”证明△AOE和△COF全等,再根据全等三角形的即可得证;

(2)连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.

解:(1)当F为BE中点时,如图1,

则有BF=EF.

∵四边形ABCD是矩形,

∴AB=DC,AB∥DC,

∴∠MBF=∠CEF,∠BMF=∠ECF.

在△BMF和△ECF中,

∴△BMF≌△ECF,

∴BM=EC.

∵E为CD的中点,

∴EC=DC,

∴BM=EC=DC=AB,

∴AM=BM=EC;

(2)如图2所示:设MB=a,

∵四边形ABCD是矩形,

∴AD=BC,AB=DC,∠A=∠ABC=∠BCD=90°,AB∥DC,

∴△ECF∽△BMF,

∴EC:BM=EF:BF=2,

∴EC=2a,

∴AB=CD=2CE=4a,AM=AB﹣MB=3a.

∵AB:BC=2,

∴BC=AD=2a.

∵MN⊥MC,

∴∠CMN=90°,

∴∠AMN+∠BMC=90°.

∵∠A=90°,

∴∠ANM+∠AMN=90°,

∴∠BMC=∠ANM,

∴△AMN∽△BCM,

∴AN:BM=AM:BC,

∴AN:a=3a:2a,

∴AN=a,ND=AD﹣AN=2a﹣a=a,

=3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等腰RtABC中,∠ACB90°,ACBCD是线段BC上一动点(不与点BC重合),连接AD,延长BC至点E,使得CECD,过点EEFAD于点F,再延长EFAB于点M

1)若DBC的中点,AB4,求AD的长;

2)求证:BMCD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图市防汛指挥部决定对某水库的水坝进行加高加固设计师提供的方案是:水坝加高1(EF=1),背水坡AF的坡度i=11,已知AB=3ABE=120°,求水坝原来的高度

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙.

1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子,并用线段表示;

2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG=16m,请求出旗杆的影子落在墙上的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面就两个情景请你作出评判.

情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.

情景二:AB是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:

你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,国家规定休渔期间,我国渔政船在A处发现南偏西50°方向距A处20海里的点B处有一艘可疑船只,可疑船只正沿北偏西25°方向航行,我国渔政船立即沿北偏西70°方向前去拦截,经过1.5小时刚好在C处拦截住可疑船只,求该可疑船只航行的平均速度.

(结果精确到个位,参考数据: ≈1.4, ≈1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为6的正方形ABCD中,点FCD上一点,EAD的中点,且DF2.在BC上找点G,使EGAF,则BG的长是___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一个抛物线型蔬菜大棚,将其截面放在如图所示的平面直角坐标系中,抛物线可以用函数yax2+bx来表示,已知OA=8米,距离O2米处的棚高BC米.

(1)求该抛物线的解析式;

(2)若借助横梁DEDEOA)建一个门,要求门的高度为1.5米,求横梁DE的长度是多少米?

查看答案和解析>>

同步练习册答案