精英家教网 > 初中数学 > 题目详情
如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,过E作EG⊥EF于点E,交CD于点G.
若∠CFE=120°,则∠BEG的大小为( )

A.20°
B.30°
C.60°
D.120°
【答案】分析:由AB∥CD,根据平行线的性质可得,∠BEF=∠CFE=120°,再由EG⊥EF,可得∠FEG=90°,那么,∠BEG=∠BEF-∠FEG.
解答:解:∵AB∥CD,
∴∠BEF=∠CFE=120°(两直线平行,内错角相等),
又∵EG⊥EF,
∴∠FEG=90°,
∴∠BEG=∠BEF-∠FEG=120°-90°=30°.
故选B.
点评:此题是平行线的性质的应用,解题的关键是由平行线的性质求出∠BEF,由EG⊥EF得出∠FEG=90°.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知AB=CD且∠ABD=∠BDC,要证∠A=∠C,判定△ABD≌△CDB的方法是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,已知AB∥CD,∠A=38°,则∠1=
142°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB∥CD,∠1=50°25′,则∠2的大小是
129°35′
129°35′

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知 AB∥CD,∠A=53°,则∠1的度数是
127°
127°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB∥CD∥EF,那么下列结论中,正确的是(  )

查看答案和解析>>

同步练习册答案