精英家教网 > 初中数学 > 题目详情
19.小明准备用所学数学知识测量广场上旗杆CD的高度,如图所示,在底面A处测得顶端的仰角为25.5°,在B处测得仰角为36.9°,已知点A、B、C在同一直线上,量得AB=10米.求旗杆的高度.
(结果保留一位小数,参考数据:sin25.5°≈0.43,cos25.5°≈0.90,tan25.5°≈0.48;sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.

分析 设CD=x米,根据正切的概念用x表示出AC、BC,根据题意列出方程,解方程即可.

解答 解:设CD=x米,
在Rt△ADC中,AC=$\frac{CD}{tan∠A}$=$\frac{x}{tan22.5°}$,
在Rt△BDC中,BC=$\frac{CD}{tan∠DBC}$=$\frac{x}{tan36.9°}$,
∵AC-BC=AB,
∴$\frac{x}{0.48}$-$\frac{x}{0.75}$=10,
解得x≈13.3.
答:旗杆的高度为约13.3米.

点评 本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,为了保护运河入江口的古桥OA,规划建一座新桥BC,已知,古桥OA与河岸OC垂足,新桥BC与河岸AB垂直,且BC=AB,OC=210m,tan∠BCO=$\frac{4}{3}$.
(1)分别求古桥OA与新桥BC的长;
(2)根据规划,建新桥的同时,将对古桥设立一个保护区,要求:
保护区的边界为与BC相切的圆,且圆心M在线段OA上;
古桥两端O和A到该圆上任意一点的距离不少于140m,设圆形保护区半径为R.OM=xm.
①试求半径R与x的关系式;
②试探究:当x多长时,圆形保护区的面积最大?并求出最大面积时R的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.现有一张圆心角为108°,半径为40cm的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ的大小是(  )
A.18°B.36°C.72°D.90°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.正六边形的边心距是$\sqrt{3}$,则它的边长是(  )
A.$\frac{\sqrt{3}}{3}$B.2C.$\sqrt{3}$D.$\frac{2}{3}$$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,在平面直角坐标系中,点A的坐标是(0,3),点B的坐标是(-4,0),将△AOB绕点A逆时针旋转90°得到△AEF,则点B的对应点F的坐标是(  )
A.(3,-1)B.(3,3)C.(-3,7)D.(0,3)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.为倡导“1公里步行、3公里骑单车、5公里乘公共汽车(或地铁)”的绿色出行模式,某区实施并完成了环保公共自行车工程.该工程分三期设立租赁点,在所以租赁点共投放环保公共自行车10000辆,第一期投放21个租赁点.以下是根据相关数据绘制的自行车投放数量统计图(如图①),以及投放的租赁点统计图(如图②);”

根据以上信息解答下列问题:
(1)请根据以上信息,求第三期投放租赁点多少个?
(2)直接补全条形统计图和扇形统计图;
(3)该工程完成后,如果每辆自行车每天平均使用4次,每次骑行距离约3km,折算成驾车出行每10km消耗汽油1升,按照“消耗1升汽油=排0.63kg碳”来计算,全区一天大约减少碳排放7560kg.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,AB为⊙O的直径,C,D是⊙O上两点,∠ABC=50°,则∠D=40度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为1或$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,已知二次函数y=x2+bx+c图象顶点为C,与直线y=x+m图象交于AB两点,其中A点的坐标为(3,4),B点在y轴上.
(1)求这个二次函数的解析式;
(2)联结AC,求∠BAC的正切值;
(3)点P为直线AB上一点,若△ACP为直角三角形,求点P的坐标.

查看答案和解析>>

同步练习册答案