精英家教网 > 初中数学 > 题目详情
7.如图是甲、乙两种地板,它们都是由等腰直角三角形和正方形的地砖拼成,且直角边与正方形边的长相等,一个小球分别在这两种地板上自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则P1与P2的大小关系是(  )
A.P1<P2B.P1=P2C.P1>P2D.无法确定

分析 先根据甲和乙给出的图形,先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.

解答 解:由图甲可知,黑色方砖6块,共有16块方砖,
∴黑色方砖在整个地板中所占的比值=$\frac{6}{16}$=$\frac{3}{8}$,
∴在乙种地板上最终停留在黑色区域的概率为P1是$\frac{3}{8}$,
由图乙可知,黑色方砖3块,共有9块方砖,
∴黑色方砖在整个地板中所占的比值=$\frac{3}{9}$=$\frac{1}{3}$,
∴在乙种地板上最终停留在黑色区域的概率为P2是$\frac{1}{3}$,
∵$\frac{3}{8}$>$\frac{1}{3}$,
∴P1>P2
故选C.

点评 本题考查的是几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,在平面直角坐标系中,O为原点,?ABCD的顶点A在x轴正半轴上,点B在第一象限,OA=4,OC=2,点P、点Q分别是边BC、边AB上的动点,△PQB沿PQ所在直线折叠,点B落在点B1处.
(1)若?OABC是矩形.
①写出点B的坐标.
②如图1,若点B1落在OA上,且点B1的坐标为(3,0),求点Q的坐标.
(2)若OC⊥AC,如图2,过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、F.若B1F=3B1E,点B1的横坐标为m,求点B1的纵坐标(用含m的代数式表示),并直接写出点B1的所有可能的情况下,m的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.有一道题:“先化简?($\frac{m}{m+1}$-$\frac{2}{{m}^{2}-1}$)÷($\frac{1}{m-1}$+1)再其求值.”
小王代入某个数后,求得值为-1,你能确定小王代入的是哪一个值吗?你认为他代入的值合适吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知x=2+$\sqrt{3}$,y=2-$\sqrt{3}$,求下列各式的值:
(1)x2+2xy+y2
(2)x2-y2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:
(1)$\sqrt{0.04}$+$\root{3}{-8}$-$\sqrt{\frac{1}{4}}$
(2)|1-$\sqrt{2}$|+|$\sqrt{2}$-$\sqrt{3}$|+|$\sqrt{3}$-2|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知正方形ABCD的边长为1,P是对角线AC上任意一点,E为AD上的点,且∠EPB=90°,PM⊥AD,PN⊥AB.
(1)求证:四边形PMAN是正方形;
(2)求证:EM=BN;
(3)若点P在线段AC上移动,其他不变,设PC=x,AE=y,求y关于x的解析式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.小德从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?若设小德从家里到学校的平路是x米,下坡路y米,根据题意列方程组为(  )
A.$\left\{\begin{array}{l}{\frac{x}{60}+\frac{y}{80}=15}\\{\frac{y}{40}+\frac{x}{60}=10}\end{array}\right.$B.$\left\{\begin{array}{l}{\frac{x}{60}+\frac{y}{80}=10}\\{\frac{y}{80}+\frac{x}{40}=15}\end{array}\right.$
C.$\left\{\begin{array}{l}{\frac{x}{60}+\frac{y}{80}=10}\\{\frac{y}{40}+\frac{x}{60}=15}\end{array}\right.$D.$\left\{\begin{array}{l}{\frac{x}{40}+\frac{y}{80}=10}\\{\frac{y}{40}+\frac{x}{60}=15}\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.某校为了解学生每周课外阅读时间的情况,对3000名学生采用随机抽样的方式进行了问卷调查,调查结果分为“2小时以内”,“2小时~3小时”,“3小时~4小时”和“4个小时以上”四个等级,分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:
(1)x=30,样本容量是400;
(2)将不完整的条形统计图补充完整;
(3)请估计该校3600学生中每周课外阅读时间在“2个小时以上”的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)请直接写出线段AF,AE的数量关系AF=$\sqrt{2}$AE;
(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;
(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.

查看答案和解析>>

同步练习册答案