A. | 6cm | B. | 5cm | C. | 4cm | D. | 3cm |
分析 根据三角形内角和定理求出∠BAC,根据线段垂直平分性质求出BE=AE=6cm,求出∠EAB=∠B=15°,求出∠EAC,求出∠AEC,根据含30°角的直角三角形性质求出即可.
解答 解:∵在△ABC中,∠ACB=90°,∠B=15°,
∴∠BAC=90°-15°=75°,
∵DE垂直平分AB,交BC于点E,BE=6cm,
∴BE=AE=6cm,
∴∠EAB=∠B=15°,
∴∠EAC=75°-15°=60°,
∵∠C=90°,
∴∠AEC=30°,
∴AC=$\frac{1}{2}$AE=$\frac{1}{2}×$6cm=3cm,
故选D.
点评 本题考查了线段垂直平分线性质,含30°角的直角三角形性质,等腰三角形的性质,三角形内角和定理的应用,能求出∠AEC的度数和AF=BF是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | AD:DE=2:3 | B. | AD:BD=2:3 | C. | AD:AE=2:3 | D. | AD:AB=2:3 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com