【题目】学生的学习兴趣如何是每位教师非常关注的问题.为此,某校教师对该校部分学生的学习兴趣进行了一次抽样调查(把学生的学习兴趣分为三个层次,A层次:很感兴趣;B层次:较感兴趣;C层次:不感兴趣);并将调查结果绘制成了图①和图②的统计图(不完整).请你根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了 名学生;
(2)将图①补充完整;
(3)求图②中C层次所在扇形的圆心角的度数;
(4)根据抽样调查的结果,请你估计该校1200名学生中大约有多少名学生对学习感兴趣(包括A层次和B层次).
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+2经过点A(﹣1,0)和点B(4,0),且与y轴交于点C,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点,连接CA,CD,PD,PB.
(1)求该抛物线的解析式;
(2)当△PDB的面积等于△CAD的面积时,求点P的坐标;
(3)当m>0,n>0时,过点P作直线PE⊥y轴于点E交直线BC于点F,过点F作FG⊥x轴于点G,连接EG,请直接写出随着点P的运动,线段EG的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:
编号 | 一 | 二 | 三 | 四 | 五 |
人数 | 15 | 20 | 10 |
已知前面两个小组的人数之比是.
解答下列问题:
(1) .
(2)补全条形统计图:
(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的弦,过点O作OC⊥OA,OC交于AB于P,且CP=CB.
(1)求证:BC是⊙O的切线;
(2)已知∠BAO=25°,点Q是弧AmB上的一点.
①求∠AQB的度数;
②若OA=18,求弧AmB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在平行四边形ABCD中,AB=10,BC=16,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.
(1)当圆C经过点A时,求CP的长
(2)联结AP,当AP//CG时,求弦EF的长
(3)当△AGE是等腰三角形时,求圆C的半径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(发现)如图,点E,F分别在正方形ABCD的边BC,CD上,连接EF.因为AB=AD,所以把ΔABE绕A逆时针旋转90°至ΔADG,可使AB与AD重合.因为∠CDA=∠B=90°,所以∠FDG=180°,所以F、D、G共线.
如果__________(填一个条件),可得ΔAEF≌ΔAGF.经过进一步研究我们可以发现:当BE,EF,FD满足__________时,∠EAF=45°.
(应用)
如图,在矩形ABCD中,AB=6,AD=m,点E在边BC上,且BE=2.
(1)若m=8,点F在边DC上,且∠EAF=45°(如图),求DF的长;
(2)若点F在边DC上,且∠EAF=45°,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等腰直角三角形,∠ACB=90°,点E、F分别是边BC、AC的中点,P是AB上一点,以PF为一直角边作等腰直角三角形PFQ,且∠FPQ=90°,若AB=10,PB=1,则QE的值为( )
A. 3 B. 3 C. 4 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是直径,于点,连接交于点,过点作的切线交于点,连接交于点
(1)求证:
(2)连接并延长,交于点,填空:
①当的度数为_________时,四边形为菱形;
②当的度数为__________时,四边形为正方形;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD、BC于点E、F,点P是边DC上的一个动点,且保持DP=AE,连接PE、PF,设AE=x(0<x<3).
(1)填空:PC= ,FC= ;(用含x的代数式表示)
(2)求△PEF面积的最小值;
(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com