【题目】如图,在矩形ABCD中,AB=9,AD=6,点O为对角线AC的中点,点E在DC的延长线上且CE=1.5,连接OE,过点O作OF⊥OE交CB延长线于点F,连接FE并延长交AC的延长线于点G,则=_____.
【答案】
【解析】
作OM⊥CD于M,ON⊥BC于N,根据三角形中位线定理分别求出OM、ON,根据勾股定理求出OE,根据相似三角形的性质求出FN,得到FC的长,证明△GFC∽△GOE,根据相似三角形的性质列出比例式,代入计算得到答案.
解:作OM⊥CD于M,ON⊥BC于N,
∵四边形ABCD为矩形,
∴∠D=90°,∠ABC=90°,
∴OM∥AD,ON∥AB,
∵点O为AC的中点,
∴OM=AD=3,ON=AB=4.5,CM=4.5,CN=3,
∵CE=1.5,
∴ME=CM+CE=6,
在Rt△OME中,OE==3,
∵∠MON=90°,∠EOF=90°,
∴∠MOE+∠NOE=∠NOF+∠NOE=90°,
∴∠MOE=∠NOF,又∠OME=∠ONF=90°,
∴△OME∽△ONF,
∴,即,
解得,FN=9,
∴FC=FN+NC=12,
∵∠FOE=∠FCE=90°,
∴F、O、C、E四点共圆,
∴∠GFC=∠GOE,又∠G=∠G,
∴△GFC∽△GOE,
∴,
故答案为:.
科目:初中数学 来源: 题型:
【题目】在平面内,对于给定的,如果存在一个半圆或优弧与的两边相切,且该弧上的所有点都在的内部或边上,则称这样的弧为的内切弧.当内切弧的半径最大时,称该内切弧为的完美内切弧.(注:弧的半径指该弧所在圆的半径)
在平面直角坐标系中,.
(1)如图1,在弧,弧,弧中,是的内切弧的是____________;
(2)如图2,若弧G为的内切弧,且弧G与边相切,求弧G的半径的最大值;
(3)如图3,动点,连接.
①直接写出的完美内切弧的半径的最大值;
②记①中得到的半径最大时的完美内切弧为弧T.点P为弧T上的一个动点,过点P作x轴的垂线,分别交x轴和直线于点D,E,点F为线段的中点,直接写出线段长度的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD边长为4,E、F、G、H分别是AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
问题情境
数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,和是两个全等的直角三角形纸片,其中,,.
解决问题
(1)如图①,智慧小组将绕点顺时针旋转,发现当点恰好落在边上时,,请你帮他们证明这个结论;
(2)缜密小组在智慧小组的基础上继续探究,连接,当C绕点继续旋转到如图②所示的位置时,他们提出,请你帮他们验证这一结论是否正确,并说明理由;
探索发现
(3)如图③,勤奋小组在前两个小组的启发下,继续旋转,当三点共线时,求的长;
(4)在图①的基础上,写出一个边长比为的三角形(可添加字母).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
求出每天的销售利润元与销售单价元之间的函数关系式;
求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?每天的总成本每件的成本每天的销售量
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小颖“综合与实践”小组学习了三角函数后,开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,如表是不完整测量数据.
课题 | 测量旗杆的高度 | |||
成员 | 组长:小颖,组员:小明,小刚,小英 | |||
测量工具 | 测量角度的仪器,皮尺等 | |||
测量示意图 | 说明: 线段GH表示学校旗杆,测量角度的仪器的高度AC=BD=1.62m,测点A,B与H在同一水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内,点C,D,E在同一条直线上,点E在GH上. | |||
测量数据 | 测量项目 | 第一次 | 第二次 | 平均值 |
∠GCE的度数 | 30.6° | 31.4° | 31° | |
∠GDE的度数 | 36.8° | 37.2° | 37° | |
A,B之间的距离 | 10.1m | 10.5m | m | |
… | … |
(1)任务一:完成表格中两次测点A,B之间的距离的平均值.
(2)任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(精确到0.1m)(参考数据:sin31°≈0.51,cos31°≈0.86,tan31°≈0.60,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形中,,点是线段上的一个动点,以点为圆心,为半径作,连接.
(1)当经过的中点时,的长为_ ;
(2)当平分时,判断与的位置关系.说明理由,并求出的长;
(3)如图2,当与交于两点,且时,求点到的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.
(1)求新坡面的坡角∠CAB的度数;
(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数y=kx+4与二次函数y=ax2+c的图像的一个交点坐标为(1,2),另一个交点是该二次函数图像的顶点
(1)求k,a,c的值;
(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图像相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com