分析 (1)因为这两个三角形是直角三角形,根据旋转的性质得出BC=BD,由AD∥BC推出∠ADB=∠EBC,从而能证明△ABD≌△ECB;
(2)由全等三角形的性质得出AD=BE=3.根据30°角所对的直角边等于斜边的一半得出BD=2AD=6,根据平行线的性质求出∠DBC=60°,再代入弧长计算公式求解即可.
解答 (1)证明:∵∠A=90°,CE⊥BD,
∴∠A=∠BEC=90°.
∵BC∥AD,
∴∠ADB=∠EBC.
∵将斜边BD绕点B顺时针方向旋转至BC,
∴BD=BC.
在△ABD和△ECB中,
$\left\{\begin{array}{l}{∠ADB=∠EBC}\\{∠A=∠BEC}\\{BD=CB}\end{array}\right.$
∴△ABD≌△ECB;
(2)∵△ABD≌△ECB,
∴AD=BE=3.
∵∠A=90°,∠BAD=30°,
∴BD=2AD=6,
∵BC∥AD,
∴∠A+∠ABC=180°,
∴∠ABC=90°,
∴∠DBC=60°,
∴弧CD的长为$\frac{60π×6}{180}$=2π.
点评 本题考查了全等三角形的判定和性质,平行线的性质,旋转的性质,弧长的计算,证明出△ABD≌△ECB是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 30° | B. | 40° | C. | 45° | D. | 50° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com